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Abstract

This paper presents a jocation-price equilibrinm problem on 2 tree.
Nash equilibrium conditions are presented for a spatial competition
model that incorporates price, transport and externality costs. The
presented resalt describes a sufficient condition under which the Nash
equilibria oz locations and prices are guaranteed. Moreover, the Nash
equilibrium on location is a median of the tree. An example is then
given to show that there are medians that are not Nash equilibria.
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1 Introduction

In general, models in spatial competition involve decisions on location, price
and production, made by firms in a spatial market. Equilibrium problems
in spatial competition on a network considering location and price or pro-
duction, have heen studied by Lederer and Thisse (1990), Labbé and Hakimi
{1991}, and Sarkar, Gupta and Pal {1947}, among others. Equilibrium mod-
els incorporating lecation and externality cost have been investigated by
Brandean and Chiu (1994s, 1994b).

The paper by Dorta-Gougéles, Santos-Pefiate, and Sudrez-Vega (2002)
proposes a spatial competition model in networks incorporating price and
externality cost. In this model firms are already located and therefore the
location equilibriwn is not studied. A regulating agent assigns the demand,
taking into account the price, transport and externality costs, and minimizes
the joint consumer cost in order to obtain a Pareto optimal allocation. As-
suming the Pareto optimal allocation, each firm selects the price, for fixed
locations, in order to maximize its profit.

Two different approaclies are usually considered when firms have chosen
the location and the price. Most models in this context follow Hotelling’s
formulation (Hotelling, 1929) and use a refinement of the Nash equilibrium.
More precisely, firms are supposed o choose location and price, ene at a time,
in a two-stage process, with the aim of maximizing their own profit. The di-
viston into two stages is motivated by the fact that the choice of location
is usually prior to the decision on price. In the first stage, firms shmilta-
neously choose their location. Given any outcome of the first stage, firms
then simultaneously choose their price in the second stage. The correspond-
ing two-stage solution concept is called a subgame perfect Nash equilibrium
{Selten, 1975). It captures the idea that, when firms select their location,
they all anticipate the consequences of their cheice on price competition.

This paper studies the location-price equilibriume on trees based on the
model by Dorta-Gongdler, Santos-Pefiate, and Sudrez-Vega (2002). There-
fore, this model involves decisions on location and price in the presence of
externalities. Assuming the Pareto optimal alflocation, each firm first selects
the location of a facility and then selects the price in order to maximize its
profit. The goods are assnmed to be essential, which means that the demand
is parfectly inelastic. Nash equilibrium conditions are presented for a spatial
competition model that incorporates price, transport and externality costs.
The presented result describes a sufficient condition under which the Nash
equilibria on locations and prices are guaranteed, The aim of the first stage
is to determine the Nash cquilibrium locations considering that the Nash
equilibrium prices for each pair of feasible locations are known. A situation
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is a Nash equilibritn if no firm unilaterally finds it profitable to change. For
instance, a pair of loeations, £4 and zp, is a Nash equilibriuzm if and only if

wa{Ta,Tp) = znzaxvr,g(:c,:r};},
g (z4,75) = moxng(za o),

where m; represents the profits for firm 4,4 = A, B. In a similar way, a pair
of prices, py and pg, is a Nash equilibrium if and only if

T4 P, s = Max 7Y (p,p8),
rg (pa.ve) = wax e {pa.p) .

The rest of the paper is organized as follows. The location-price equi-
Ybrium is discussed in section 2. Section 3 contains an example illustrating
a situation where a median of a tree is not a Nash equilibrium on location.
Finally, some coneluding yemarks are presented in section 4.

2 Equilibrium analysis

Lot T(V, E) be a tree with node set V' and edge set F. Two firms, A and
B, located on the tree at points T4 and zp respectively, provide a product
to consumers at nodes v, € V, k= 1,2,...,n. The demand at node vy is Ay
and the $otal demand is A = ¥ p_; Ax. The demand is perfectly inelastic and
it is totally satisfied, therefore A = A + Ap where A; is the market share
captured by firm 4, i = A, B. The marginal cost for firm  is assumed to be
independens of the quantity supplied and it is denoted by C;.

Consider also the following notation:

 ty =t {d{vg, x;)) is the transport cost from the demand node £ to the
firm located at z;,

- p; is the mill price determined by firm 1,

- e; > 0 is the unit externality cost of firm ¢ and E;{A) = e;Ay, that is,
the externality cost functions are assunied to be linear.

In this section, asswning the Pareto optimal allocation, the location-price
cquilibrium is obtained. Under the Pareto optimal allocation the study of
the location-price equilibrium would be carried out as a two-stage game in a
similar way 1o other equilibrium problems analyzed in the literature (Labbé
and Hakimi, 1991; Sarkar, Gupta and Pal, 1997). Firstly, the locations
are chosen and then, given these, the prices are determined. To obtain the
equitibrium an tverse process is applied; given the locations, the price equi-
librium is inferred and then, using this information, the location equilibrium
is obtained.



68 P. Dorta-Gonzdlez, D.R. Santos-Periate & R. Sudrez-Vega

Let x4 and zr be a pair of fixed locations for the firms,
Ap=trp+ps —tea —pa, k=1,2,..,n,

Ao = +00, An«H = =00,

The difference of delivered costs (price plus transport cost) between firm B
and firm A4, Ay, is a measure of efficiency. Nodes can be renamed from the
point where firm A is the most efficient serving to that where firm B is the
most efficient. Without loss of generality, assume that

A >Ay> . > An—l = An.

If A = Apyq then the demand nodes k and &+ I are aggregated. We also
define

J
fj’ = ZAM j:].,z,---,n, f0=0) f'n.=Aa
kel

LY = tip—t;a+2{ea+2ep) A~ Gleateslfs, j=1,...m,

Tﬁl = ©ip—ta+2(es+2ep) A —6(eq terifyr, F=1,.m

These values, LY and T ,, allow us to make a division of the real line. Notice
that

N N N N N N N N N N
Vet by < < T <L <TI0, < L, < <1y < L < T

Let 4y € {1, ...,n} such that
' N
LY <Oy~ Cp <T5 1.

Then, from Dorta-Conzélez, Santos-Peflate and Sudres-Vega {2002), corol-
faries 2 and 3, there exists a local equilibrium in ($a, Pr),

1

P4 = -3-{2(]A+Cp+tj03—tj0;1+2(e‘4-€-283)1\],
1

P - E[CAJrQCB—M,-L,A—tjug%—Z(EeA—i-eE)A].

Now, using tlis price equilibrium, the location equilibrium is studied. In
order to de this, the following notation is introduced.
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Given vy € V, let

Viu) = o€ V: Biog) € B},
Vi, u)={v € V: &y, < 8y b, Yu € Vi,
MW iwi= 3 A

veV ()

S min){A(V{vj,u)}} ,

wEV vy

i e 1;1}15,;: {i(l{j, v)}.

The set V (v;} is determined by the adjacent nodes to v; and, for each of these
adjacent nodes u, the set V{2;, 1) contains those nodes on the tree which are
closer te v; than u. The mininum total demand of these sets Vv, u} for all
adjacent nodes is ;. Finaily, +; is the maximum transport cost between the
nodes of the tree and v;.

The following assumption establisiies a threshold for the marginal costs
according to the minimum lotal demand 7; and the maximum transport
cost ;. This assumption will be used later in a proposition as a sufficient
condition for the existence of a Nash equilibrium on location.

Assumption 1 There exists v, € V such that

Yip + 2(8,.1 -} 2EB)A — G(GA -+ eB)’?jn <4 —Cg
T 2{8,4 + 263)/\ — G(BA + 6;3) {A - ?’}jo) .

Note that the inequality
Yio+2{ea +2egdh —Blegtep)ny, < —vi +2(eq+2ep)A~6{ey+ep) (A —15)
oceurs if and ondy if
Lyjp < 6lea +er) (A + 2ny),

that. is A
. Yio
- )
Mo = 2 i 6(8,1 -+ BB)
- Yio > é’
2 bBleateg) 2
from condition

o B
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we conclude that if a verter v, satisfies Assumption 1, then vy, is a median
of the tree. Nevertlieless, the inverse implication is not true for two reasons.

Firstly, because the difference in marginal costs can be outside the threshold
and, secondly, because condition n;, > -‘,}, which guarantee that vy, is a
median, does not imply n;, > $ + E(e_ﬁ?;)'

Assumption 1 is more restrictive than the existence of a median in the
tree. The relative competitiveness, which is expressed by the difference of
firms” marginal costs, is one key determinant. In addition to the existence of
a median in the tree, Asswnption 1 establishes that the difference of marginal
costs is not too large, that is, both firms must have a similar competitiveness.
On the other hand, the condition 1, > % + E(—ﬂ]e_a,‘; is satisfied when the
maxdirin transport cost vy, is not too large; i.e., the tree is not too deep.

Therefore, Assumption 1 intuitively means that two finns with a similar

competitiveness waut to locate in a non-deep tree with at least one median,

D2 (255

Figure 1: Tree satisfying Assumyption 1.

The following example iHustrates a situation where Assumption 1 ocours.
Figure 1 shows a tree with 3 nodes and demands A; = 2, A\ = 7,33 = 5. The
unit externality costs are eq = 0.2, eg = 0.3. The distances are shown in
figura 1 and-t{ug, v;) = Hby0;) = Sy,

Note that 2z i3 a median of the tree. Furthermore, if jo = 2, then vy, = 4.5
and
Yia
Nio 2 + 6(€A+ eB),

Vio + 2(614 + QeB)A - 6(84 + eB}Tn'jo =01,
~Yfu + 2(6.4 + 2eB)A - 6<6A + BB) (A - nju) =29

Then, for values of Cy and Cg such that
—01< Oy —Cg <29,

Assumption 1 holds, in particular if Cq = Cpg, for example.

The following proposition establishes that under the previous assumption
a Nash eqguilibrium on loeation exists and it is a median of the tree.



Location-price equilibrium on frees 71

Proposition Let T(V, E) be a tree and t{z,y) = t{dyy) = obqy, @ > 0.
Under Assumption 1, (T4, T8) = (0, vy,) % 0 Nash equilibrinm on locations
and vj, is a median of the tree.

Proof.

It will be proved that each firm masdimizes its profit at v;, when the other
firm is located at vy, This proof is given as a consequence of a previous resuit
obtained by the same authors in an carlier publication.

{a) Cousider £4 = vy, and @ € T. It will be proved that finn B maximizes
its profit when zg = vy,.

Consider the shortest path between T4 = vy, and zp € T, The nodes
ontside this path can be aggregated to the nearest node in the shortest
path, resulting in a linear tree. Denoting w1 = vj,, tm = g,

LY = LY = tjn = tja + 2{ea+ 2ep) A — 6es + e5) f,
=ts+ 2{eqs+2ep) A —6{ea +eg)fi
<7+ 2{ea + 2ep) A~ 6lea +en)fn
=+ 2(eq + 2ep) A — Gles +egly,
<Ca—Cs

Moreover,

Ty = Tho: = tis — tiea +2(ea+2ep) A ~6lea -+ er)fina
=t +2(eq +2ep) A
2 —Vjo +2(ea + 2ep) A
2 =i b 2{ea+ 2ep) A —Gles +eg) (A — 1)
2 Ca~Cs.
Sinece LJ-Nn < from Dorta-Gonzdlez et all (2002),

propasttion &, the profit function for firm B is

Cy—Cp < TY 4,

i
7r (T4, 15) = T (Ca—Cuttpa—tost2(2e4+eg)A)
1 2
e (4 — O — 1 +2(%e4 - eg) AV
18(6,44‘63) (CA Cy o8 + ( ex + PB) )

Naote that

tws ~ 2(2es +ep) A <y + 2{eq + 2ep)A — (e +enliy,
S CA - CB?
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that is

Cs—~Cp—typ +2(2ea+eplA >0
and therefore 7y is maximum when ;5 is mininmzm, ie., when g =
Vg
Consider Tp = vy, and z4 € T. It will be proved that firm A maximizes
its profit when x4 = vj,.

Consider the shortest, path between 5 = vy, and 4 € T. The nodes
outside of this path can be aggregated to the nearest node in the short-
est path, resulting in a linear tree. Denoting wy = 24, tm = Vjo,

LY - Lﬁ: = t,8 —tipa+2({ea+2ep) A —6(eq +eglfi
= —t;4 +2{ea+2ep) A — b{ea+ep)A
Ly +2(ea+ 2ep} A — Gleq +ep)A
< +2(ea+ 2ep) A — 6{es + en)iy,
<y — g
Moreover,
T = Tp = tis ~tipat+ 2(ea+ 2e8) A —Glea + ep) fip1
= —tjpa+2(es+2er) A~ 6lea +eg) (A—Ny,)
= i 2{ea+2ep) A — Blea + eg){A — Ay)
= —y;, +2(ea +2ep) A —6les +eg) (A — ;)
>~ Cg.

Since Lg < Oy —Cg < T}fﬁvml, from Dorta-Gonzaler et all (2002),

proposition 8, the profit function for firm A is
1

Ta (S’JAuffB) = m (CE - CA 4 ijB — tjuA + Q(EA T 25}3} A)Q
1
= T8(es reg) (07 = Ot 2leat2en) A)°.

Note that
~tja -t 2lea+2ep) A 2 —y; +2{ea+ 2ep)A — Blea +ep) (A — 1)
2 Oy — GB!
that is
Cg—Cy— Lina + 2(€A q- 2EB}A =0
and therefore w4 is maximum when ;4 is minimum, ie., when ¥4 =
V-
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From (a) and (b} it, follows that (24, #8) = (v, vs,) is a Nash equilibrinm
on loeations. Furtherimore, Assumption 1 implies the condition

Mg > E:

and from this we conclude that vy, is a median of the tree. n}

The price equilibrium and the profit functions can be obtained from
Daorta-Gonzdalez, Santos-Peflate and Sudres-Vega (2002}, proposition 7 and
8, considering that 4 = Tp = vy,. That is, (fa, P} witl:

1
fq = §[QCA+CB+2(BA+235)A]1
1
P = 3[Ca+2Cs+2{2ea+en)A],

is a Nash equilibrium in the second stage and the profit functions are

I
4 (%A, %5, Pa, Pi) 5 (Co —Cat 2ea+ 2e) A,

18{es + eg
1

1 .- +eg) AV
18(es + ea) {Ca—Cr+2(2e4 tep)A)

75 (T4, 55,04, P5)

In the proposition, Nashk equilibrizum conditions arve presented for a spatial

competition model that incorporates price, transpori and externality costs.

The presented result describes & sufficient condition under which: the Nash

equilibria on locations and prices are gnaranteed. An example which shows

that there are medians that are not Nash equilibria is given in the next
section.

3 Example

This example illustrates a situation where a median of a tree is not a Nash
equilibrium on location. Figure 2 shows a tree with 4 nodes and demands
Ay = Ay = Ay = Ay = 3 The marginal costs are

CA{:I‘) =10, CB(.‘L') =5 Ve eT,

and the unit externality costs are eq = 1.2, ey = 0.3. The distances are
shown in figure 2 and t{ug, v;) = by ) = Sy,
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@ 3 @ 3 @ 4.5 @

Figiire 2: Tree used in the example.

Note that v, and vy are medians of the iree. Furthermore, if jp = 3, then
Yip = 6 and
A A ¥
== e b
o 757 " Blea +en)
Consider ©4 = g = vy. In this cage all the podes can be aggregated to node
vy. Since {5 — ;4 = 0, Vj, and

~2(2e4 +eg)A < Oy ~ Cp < 2es + 2e5)A,

then

T4 {ug,vg) = 22.40, 7g (vs, v3) == 52.80.
Now consider 4 = v3 and zg = v;. In this case the nodes can be aggregated
to the edge ['02,1)3]. Denoting u; = vz and 4y = vs, results

LY =432, TV =222,
LY <Ca—Ca <TY.

Moreover,
74 (g, 1) = 32.87, g (v, v3) = 39.27.

Therefore, (v, vy) s not a Nash equilibritun,
This counterexample proves that medians of Lrees are not necessarily Nash
eqguilibria.

4 Concluding remarks

In this paper, assuming the Pareto optimal allocation, a location-price eqii-
librium preblem with linear externality costs is investigated. The location
equilibrium on trees is studied and under certain conditions, a Nash equi-
librium on location exists and it is a median of the tree. As was shown in
section 4, there are medians which are not Nash equilibria.

Some extensions to the problem result from considering different hypoth-
egis in the definition of the model, such as, price-elastic demand functions, a
leader-follower behavior on price, an oligopolistic market, and other general
externality cost functions.
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