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We address the problem of finding location equilibria of a location-price game where firms first select their
locations and then set delivered prices in order to maximize their profits. Assuming that firms set the equilibrium
prices in the second stage, the game is reduced to a location game for which a global minimizer of the social
cost is a location equilibrium if demand is completely inelastic and marginal production cost is constant.
The problem of social cost minimization is studied for both a network and a discrete location space. A node
optimality property when the location space is a network is shown and an Integer Linear Programming (ILP)
formulation is obtained to minimize the social cost. It is also shown that multiple location equilibria can be
found if marginal delivered costs are equal for all competitors. Two ILP formulations are given to select one of
such equilibria that take into account the aggregated profit and an equity criterion, respectively. An illustrative
example with real data is solved and some conclusions are presented.
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1. Introduction

Major decisions for firms that sell the same type of product
and compete for customers are where to locate their facilities
and what price to set. The profit each firm gets is affected not
only by the location of its facilities and the price that the firm
set in the market, but also by the facility locations and the
prices set by its competitors. The maximization of profit for
each competing firm can be seen as a location–price game,
which has been studied since the work by Hotelling (1929).
Much existing literature deals with a linear market (see
d’Aspremont et al, 1979; Osborne and Pitchik, 1987;
Gabszewicz and Thisse, 1992), which is in part due to the
complexity of solving the associated location problems in
other location spaces as the plane or a network (see the
survey papers Eiselt et al, 1993; Plastria, 2001; Revelle and
Eiselt, 2005).

Profit is estimated in most models in this context assuming
that customers buy at the cheapest facility. A refinement of
the Nash equilibrium by using a two-stage process is taken
as solution of the corresponding game. In the first stage,
firms simultaneously choose locations. Given any outcome
of the first stage, firms then simultaneously choose prices
in the second stage. The corresponding two-stage solution is
called a subgame perfect Nash equilibrium. It captures the
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idea that, when firms select a location, they all anticipate the
consequences of their choice on price. The division into two
stages is motivated by the fact that the choice of location
is usually prior to the decision on price. Furthermore, the
location decision is relatively permanent whereas the price
decision can be easily changed.

The existence of a price equilibrium in the second stage of
the game depends on the price policy to be considered, among
other factors. When each firm sets a factory price equal for
all the customers in the market and the buyer takes care of
the transportation (f.o.b. or mill pricing policy) a price equi-
librium rarely exists (see Garcı́a et al, 2004). In this case,
the associated location problem has been studied in nonlinear
location spaces by taking prices as parameters (see Eiselt,
1992; Garcı́a and Pelegrı́n, 2003; Serra and ReVelle, 1999;
Zhang, 2001). On the other hand, there frequently exists a
price equilibrium when each firm charges a specific price
in each market area, which includes the transportation costs
(delivered pricing policy). The existence of a price equilib-
rium was shown for the first time by Hoover (1936), who
analysed spatial discriminatory pricing for firms with fixed
locations and concluded that a firm serving a particular market
would be constrained in its local price by the delivery cost
of the other firms serving that market. In situations where
demand elasticity is ‘not too high’, the equilibrium price at a
given market is equal to the delivery cost of the firm with the
second lowest delivery cost. This result was extended later to
spatial duopoly (see Lederer and Hurter, 1986; Lederer and
Thisse, 1990) and to spatial oligopoly (see Garcı́a et al, 2004;
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Dorta-González et al, 2005) for different types of location
spaces.

In a duopoly with completely inelastic demand and constant
marginal production costs, Lederer and Thisse (1990) show
that a location equilibrium exists that is a global minimizer of
the social cost. The social cost is defined as the total delivered
cost if each customer were served with the lowest marginal
delivered cost. In oligopoly, the same result is obtained by
Dorta-González et al (2005), who present a model where firms
take location and delivery price decisions along a network of
connected but spatially separated markets. Under reasonable
assumptions, they show that a location equilibrium can be
found at the nodes. Then, a location equilibrium can be deter-
mined by global minimization of the social cost, but, to our
knowledge, no procedure has been proposed for finding such
equilibrium. If demand is price sensitive or marginal produc-
tion costs are not constant, the socially optimal locations may
not be an equilibrium of the location-price game as has been
shown in Gupta (1994) and Hamilton et al (1989).

This work extends the paper by Dorta-González et al
(2005), to a multifacility scenario, where each firm sets up
multiple facilities, and it presents a solution procedure to
find a location equilibrium. For any location space, it is
shown that the locations of the firms are in equilibrium if
and only if each firm minimizes the social cost with respect
to the competitors’ fixed locations. If the location space is
a network, it is proved that a location equilibrium exists at
the nodes. An integer linear programming (ILP) formulation
is proposed to find a location equilibrium in discrete loca-
tion space. In the case that all competitors have the same
location candidates and equal marginal delivered costs, it is
shown that multiple location equilibria exist. A discussion
on the selection of a location equilibrium and an illustrative
example are also presented.

The rest of the paper is organized as follows. In Section 2,
the notation and the model are introduced for an arbitrary loca-
tion space and two competing firms. The equilibrium analysis
is discussed in Section 3, where a node optimality property is
shown when the location space is a network. The ILP formu-
lation for finding a location equilibrium in discrete space is
presented in Section 4. Section 5 is devoted to the existence of
multiple location equilibria. Two procedures are presented to
select one of the multiple equilibria. An illustrative example
with real data is also shown. Finally, an extension to oligopoly
and some conclusions are presented in Section 6.

2. The location–price game

We consider several firms playing a location-price game in an
arbitrary location space (eg a line, a network, the plane, etc.)
in which there is a set of spatially separated market areas.
We assume that markets are aggregated at n demand points
(see Francis et al, 2002 for demand aggregation). At each
demand point a given homogeneous price-inelastic product
will be sold by the competing firms. The firms manufacture

and deliver the product to the customers, which buy from the
firm that offers the lowest price. First the firms have to choose
their facility locations in some predetermined location space,
and then, once their facility locations are set, the firms will
set delivered prices at each demand point. In this way, each
firm has to make decisions on location and price in order
to maximize its profit. For simplicity, we consider two firms
locating several facilities each, but the results obtained can be
extended to any number of competing firms, as will be shown
in Section 6.

The following notation will be used:

k, K = {1, . . . , n} index and set of markets
qk demand in market k
u = 1, 2 index of the firm
Lu set of possible facility locations for

firm u
Xu set of facility locations chosen by firm u,

Xu ⊂ Lu

cux marginal production cost of firm u at
location x, x ∈ Lu

tuxk marginal transportation cost of firm u
from location x to market k

puxk = cux + tuxk marginal delivered cost (or minimum
delivered price) of firm u from location
x to market k

puk (X
u) =min{puxk : x ∈ Xu}, minimum price

that firm u can offer in market k

Note that Lu may be a finite set of points (Discrete Loca-
tion), the points in a network, nodes or points on the edges
(Network Location), or a region in the plane (Planar Loca-
tion).

2.1. Price equilibrium

In this subsection, we show the existence of a price equi-
librium for the second stage of the game. It is assumed that
customers do not have any preference concerning the supplier
and they buy from the firm that offers the lowest price. We
consider that, each firm cannot offer a price below its marginal
delivered cost and each facility can supply all demand placed
on it. Thus, for each market k, once the sets of locations Xu ,
u=1, 2, are fixed, firm u, u=1, 2, will set a price greater than,
or equal to, puk (X

u). If the two firms offer the same price in
market k, the one with the minimum marginal delivered cost
can lower its price and obtains all the demand in market k.
Then we consider that ties in price are broken in favour of the
firm with lower marginal delivered cost. If the tied firms have
the same marginal delivered cost in market k, no tie breaking
rule is needed to share demand because they will obtain zero
profit from market k as a result of price competition.

In the long-term competition, customers in market k will
not buy from firm u if puk (X

u) >min{puk (Xu) : u = 1, 2}, in
such a case its competitors can offer the lowest price. In order
to maximize its profit, the firm with the minimum marginal
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delivered cost in market kwill set a price equal to theminimum
marginal delivered cost of its competitor, which in turn is,
as result of the price competition process, the price set by its
competitor in market k. With such prices, none of the two
firms will react by changing the price and therefore a price
equilibrium is obtained.

Therefore, for any fixed sets of locations, X1 and X2, price
competition leads to the following equilibrium prices:

p̄1k (X
1, X2) =

{
p2k (X

2) if p1k (X
1) < p2k (X

2)

p1k (X
1) otherwise

p̄2k (X
1, X2) =

{
p1k (X

1) if p2k (X
2) < p1k (X

1)

p2k (X
2) otherwise

2.2. Reduction to a location game

We assume that, once the sets of facility locations Xu , u=1, 2,
are fixed, the firms will set the equilibrium price in each
market k. The markets in which each firm gets a positive profit
are determined as follows:

M1(X1, X2)={k ∈ K : p1k (X1) < p2k (X
2)} served by firm 1

M2(X1, X2)={k ∈ K : p2k (X2) < p1k (X
1)} served by firm 2

Other markets are served by both firms, but the profit
coming from these markets is zero. The profit functions are:

�1
(X1, X2) =

∑
k∈M1(X1,X2)

(p2k (X
2) − p1k (X

1)) qk

�2
(X1, X2) =

∑
k∈M2(X1,X2)

(p1k (X
1) − p2k (X

2)) qk

Then the location-price game is reduced to a location game
where decisions are on location and �u

(X1, X2) is the payoff
for player u, u = 1,2. This game is studied in the following
section.

3. Existence of location equilibria

The social cost is the total cost incurred to supply demand
to customers if each customer would pay for the product the
minimum delivered cost. For any fixed sets of locations, Xu ,
u = 1, 2, the social cost is given by:

S(X1, X2) =
n∑

k=1

min{p1k (X1), p2k (X
2)} qk

Property 1 If the firms set the equilibrium prices in each
market, then:

�1
(X1, X2) =

n∑
k=1

p2k (X
2)qk − S(X1, X2)

�2
(X1, X2) =

n∑
k=1

p1k (X
1)qk − S(X1, X2)

Proof The payoff for firm 1 can be expressed as follows:

�1
(X1, X2) =

∑
k∈M1(X1,X2)

(p2k (X
2) − p1k (X

1)) qk

+
∑

k /∈M1(X1,X2)

p2k (X
2)qk−

∑
k /∈M1(X1,X2)

p2k (X
2)qk

=
n∑

k=1

p2k (X
2)qk −

n∑
k=1

min{p1k (X1), p2k (X
2)}qk

=
n∑

k=1

p2k (X
2)qk − S(X1, X2)

Thus, the profit obtained by firm 1 is the total cost that would
be experienced by its competitor serving the entire market
with minimum delivered cost minus the social cost. A similar
expression is obtained for firm 2. �

Property 2 (X
1
, X

2
) is a location equilibrium if:

S(X
1
, X

2
)� S(X1, X

2
), ∀X1

S(X
1
, X

2
)� S(X

1
, X2), ∀X2

Proof The pair (X
1
, X

2
) is a location equilibrium if and

only if:

�1
(X

1
, X

2
)��1

(X1, X
2
), ∀X1

�2
(X

1
, X

2
)��2

(X
1
, X2), ∀X2

and from Property 1, these inequalities are equivalent to the
following ones:

S(X
1
, X

2
)� S(X1, X

2
), ∀X1

S(X
1
, X

2
)� S(X

1
, X2), ∀X2 �

Property 3 Any global minimizer of S(X1, X2) is a location
equilibrium.

Proof It follows from Property 2. �

From Property 3 it follows that we can determine location
equilibria by solving the following problem:

(P) : min {S(X1, X2) : X1 ⊂ L1, X2 ⊂ L2}
If Lu , u=1, 2, is a region in the plane, problem (P) is very

difficult to solve and require very complex global optimization
techniques. This case is outside the scope of this paper and it
will not be considered in the following.

3.1. Location on a network

If Lu , u = 1, 2, is the set of points in a network (nodes and
points on the edges), in Dorta-González et al (2005) it is
shown that, if each firm locates a single facility, there exists
a set of nodes that is a global minimizer of the social cost.
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Figure 1 Example of a network.

We extend this result to the case where each firm operates
several facilities. Let N = (V, E, l) denote a network, where
V is a finite set of nodes, E is the set of edges (pairs of
nodes), and l is the function that assigns to each edge a posi-
tive number (length, time, cost, ..) associated to the edge. A
diagram of a network is shown in Figure 1.

Assumption 1 For u = 1, 2, the marginal production cost,
cux , is a positive concave function when x varies along any
edge in the network, and it is independent of the quantity
produced.

Assumption 2 For u = 1, 2, the marginal transportation
cost, tuxk , is a positive, concave and increasing function with
respect to the distance from x to each market k.

Property 4 Under Assumptions 1 and 2, there exists a set
of nodes which is a global minimizer of the social cost.

Proof Let X1 and X2 be arbitrary sets of facility locations
in the network. If x ∈ X1 is not a node, then x is in the
interior of some edge e = (a, b) ∈ E . Assume that all points
in X1 and X2 are fixed, but the point x varies in edge e. Under
Assumptions 1 and 2, it results that the minimum price to serve
market k, min {p1k (X1), p2k (X

2)}, is a concave function when
x varies in edge e. As the sum of weighted concave functions,
with non-negative weights, is also concave, it follows that the
social cost, S(X1, X2), is concave when x varies in edge e,
and the other locations are fixed. Therefore, the social cost
reaches its minimum value on edge e for x = a or x = b. A
similar result is obtained if x ∈ X2 is not a node.

Therefore, if we replace each non-node point in X1 and
X2 by the corresponding minimizer node of the social cost,
we will obtain two sets of nodes V 1 and V 2 for which
S(V 1, V 2)� S(X1, X2). Consequently, there exists a set of
nodes that minimizes the social cost. �

Thus, the problem of finding a location equilibrium in a
network is reduced to the same problem as in discrete space.
In the following section we deal with the problem of finding
location equilibria in discrete space.

4. Determination of location equilibria in discrete space

In this section, we present an ILP formulation to find location
equilibria when Lu , u = 1, 2, is a finite set of points. In a
network, by Property 4, we can use Lu =V , u=1, 2, in order
to find location equilibria.

As Lu is finite for u = 1, 2, Xu can be represented by
a vector xu with components xui , i ∈ Lu , with 0–1 values,
where xui = 1 indicates that facility location i is chosen by
the firm u, that is i ∈ Xu , and xui = 0 means that i /∈ Xu . We
assume that the number of facilities to be located by firms 1
and 2 is r and s, respectively. The number of facilities of the
firms are not decision variables, but they are determined in
each situation depending on some exogenous factors (budget,
regulation, arbitration, etc).

For any fixed location sets x1 and x2, we consider the 0–1
variables zuik , i ∈ Lu , where zuik=1 indicates that firm u serves
market k from a facility at location i. If zuik = 0, it means that
market k is not served from a facility of firm u at location i.
Then, the social cost is given by solving the following problem
in variables zuik

S(x1, x2) = min
n∑

k=1

(∑
i∈L1

p1ik z
1
ik +

∑
i∈L2

p2ik z
2
ik

)
qk

s.t.
∑
i∈L1

z1ik +
∑
i∈L2

z2ik = 1, ∀k ∈ K

zuik �xui , u = 1, 2 ∀k ∈ K , ∀i ∈ Lu

zuik, x
u
i ∈ {0, 1}, k ∈ K , i ∈ Lu, u ∈ {1, 2}

Therefore, the social cost minimization problem becomes:

(P) : min
n∑

k=1

qk
∑
i∈L1

p1ik z
1
ik +

n∑
k=1

qk
∑
i∈L2

p2ik z
2
ik

s.t.
∑
i∈L1

z1ik +
∑
i∈L2

z2ik = 1, k ∈ K (1)

z1ik �x1i , k ∈ K , i ∈ L1 (2)

z2ik �x2i , k ∈ K , i ∈ L2 (3)∑
i∈L1

x1i = r (4)

∑
i∈L2

x2i = s (5)

zuik, x
u
i ∈{0, 1}, k∈K , i∈Lu, u ∈ {1, 2} (6)
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Once the above problem is solved, the profit of each firm is
obtained by taking into account that profit of a firm plus social
cost equals total delivered cost of its rival (see Property 1).

Problem (P) can be solved by any standard ILP-optimizer
(XPress-Mp, Cplex, . . . ), however computational difficulties
may occur when the number of binary variables is large. To
solve problem (P), the constraints zuik ∈ {0, 1} in (6) can be
relaxed to zuik �0, which makes that large instances of the
problem can be solved in small run time. The ILP-optimizers
generate one optimal solution (x̄1, x̄2) of problem (P), which
is a location equilibrium. In some cases, the existence of
multiple global minimizers of social cost may be possible,
and therefore the existence of multiple location equilibria. In
the following, we show the existence of multiple equilibria
in a particular case of the location game, and we present two
procedures to select one of such equilibria.

5. Existence of multiple location equilibria

When the location space is discrete, social cost minimiza-
tion is a combinatorial optimization problem that may have
multiple global optima and then more than one location equi-
librium could exist. In particular, this occurs if firms locate
a fixed number of facilities, have a common set of location
candidates (L1 = L2), and the minimum delivered prices that
firms can offer are equal (p1ik = p2ik , for all i and all k). In
such a case, the firms will locate at different sites and the
ILP formulation of problem (P) is reduced to the well-known
(r + s)−MEDIAN problem, where r is the number of facil-
ities for firm 1 and s is the number of facilities for firm 2
(see Rolland et al, 1996; Avella et al, 2007 for some refer-
ences on this problem). Due to symmetry, it is verified that
any partition of the optimal solution set, which contains r + s
locations, into two subsets of cardinality r and s, respectively,
is a location equilibrium. Therefore, a large number of loca-
tion equilibria can be obtained ( (r+s)!

r !s! combinations).
When more than one location equilibrium are found, the

competing firms would agree to select a Pareto optimum equi-
librium. Otherwise both firms would obtain less profit than the
one obtained by choosing a Pareto optimum. In the following,
we discuss the case in which the firms choose an equilibrium
that maximizes the aggregated profit. This is justified by the
fact that this equilibrium is a Pareto optimum for the firms,
and it is not unusual for competitors to reach agreements that
benefit both firms. Furthermore, an equity criterion is also
considered to select a location equilibrium that guarantees a
minimum level of average profit per facility to each competing
firm.

5.1. ILP formulations for selecting a location equilibrium

In the above mentioned situation, if X is an optimal solution
of problem (P) (an (r + s)−MEDIAN problem), any partition

of X into two subsets, X
1
and X

2
, of r and s locations in X ,

respectively, is a location equilibrium. There exist a plethora
of possible criteria to select one of the many partitions of

Table 1 Facility locations

Label Node Name of city Population

1 14 Albatera (Alicante) 8633
2 118 Barcelona 1 503 884
3 194 Sta. Coloma de Cervello (Barcelona) 5557
4 208 Letona (Alava) 6072
5 374 Oroso (La Coruña) 5530
6 446 Huetor Tajar (Granada) 8839
7 583 Castro del Rei (Lugo) 5850
8 588 A Fonsagrada (Lugo) 5082
9 604 Alcorcón (Madrid) 153 100

10 630 Madrid 2 938 723
11 632 Manzanares el Real (Madrid) 4547
12 654 Tres Cantos (Madrid) 36 927
13 755 Oviedo (Asturias) 201 154
14 839 Arahal (Sevilla) 18 365
15 875 La Puebla de Cazalla (Sevilla) 10 518
16 881 Sevilla 684 633
17 941 Aielo de Malferit (Valencia) 4155
18 963 Carlet (Valencia) 14 213
19 983 Ontinyent (Valencia) 32 664
20 998 Valencia 738 441
21 1035 Ugao-Miraballes (Vizcaya) 4104
22 1046 Zaragoza 614 905

a social cost minimizer (optimal solution of (P)). We will
deal with the selection of one partition that maximizes the
aggregated profit the competing firms get. The aggregated

profit corresponding to a partition X
1
, X

2
is:

�a
(X

1
, X

2
) =

n∑
k=1

(p1k (X
1
) + p2k (X

2
))qk − 2S(X

1
, X

2
)

where S(X
1
, X

2
) = S∗, S∗ being the minimum social cost

(optimal value of problem (P)).
Let pik= p1ik= p2ik . If we define the 0–1 variables de, l ∈ X ,

where dl =1 indicates that location l is assigned to firm 1, and
dl = 0 means that l is assigned to firm 2; and the continuous
variables puk , u = 1, 2, that represent the minimum delivered
price to serve market k from some facility location of firm u.
Then, the problem of finding the partition of X that maximizes
the aggregated profit can be formulated as:

(Pa(X)) : max
n∑

k=1

(p1k + p2k )qk − 2S∗

s.t. p1k � plkdl+D(1−dl), k∈K , l∈X (7)

p2k � plk(1−dl)+Ddl , k∈K , l∈X (8)∑
l∈X

dl = r (9)

dl ∈ {0, 1}, p1k �0, p2k �0, k ∈ K , l ∈ X

(10)

whereD is a fixed number greater than the maximummarginal
delivered price. Constraints (7) guarantee that p1k is not greater
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than the minimum marginal delivered price of firm 1. Simi-
larly, constraints (8) guarantee that p2k is not greater than the
minimum marginal delivered price of firm 2. The number D

Figure 2 Demand points • and facility locations �.

Table 2 Location equilibria with maximum aggregated profit

r+s S(X) r s X
1

X
2 �1(X

1
,X

2
)

r
�2(X

1
,X

2
)

s �
a

2 6986 1 1 9 3 9367 2980 12 348

3 5414 1 2 3 12,15 2891 5470 13 831

4 4240 1 3 2 11,15,18 1561 4138 13 975
2 2 11,15 2,18 3136 2101 10 475

5 3244 1 4 8 2,10,15,18 1047 3512 15 097
2 3 2,18 8,10,15 2003 2423 11 274

6 2549 1 5 7 2,4,10,14,19 977 3104 16 496
2 4 7,14 2,4,10,19 1259 2428 12 232
3 3 2,14,19 4,7,10 1714 1644 10 075

7 2223 1 6 7 2,4,6,10,16,17 977 2641 16 821
2 5 6,16 2,4,7,10,17 935 2048 12 109
3 4 6,7,16 2,4,10,17 949 2035 10 986

8 1985 1 7 5 2,4,6,10,13,16,17 330 2582 18 405
2 6 5,13 2,4,6,10,16,17 607 2202 14 428
3 5 5,13,16 2,4,6,10,17 580 1859 11 035
4 4 5,6,13,16 2,4,10,17 771 1885 10 626

9 1807 1 8 5 2,6,10,13,16,19,21,22 330 2282 18 583
2 7 5,13 2,6,10,16,19,21,22 592 1913 14 575
3 6 5,13,21 2,6,10,16,19,22 596 1591 11 337
4 5 5,6,13,16 2,10,19,21,22 762 1544 10 770

10 1641 1 9 5 1,2,6,10,13,16,20,21,22 330 2047 18 750
2 8 5,13 1,2,6,10,16,20,21,22 592 1695 14 741
3 7 5,13,21 1,2,6,10,16,20,22 596 1388 11 502
4 6 5,6,13,16 1,2,10,20,21,22 749 1314 10 883
5 5 5,6,10,13,16 1,2,20,21,22 1039 984 10 116

is used so as constraints (7) and (8) hold for any assignment
to variables dl . In the optimal solution, both variables p1k and
p2k are equal to the minimum delivered price in market k of
firm 1 and firm 2, respectively. Thus, the optimal value of
problem (Pa(X)) is the maximum aggregated profit the firms
can obtain.

If dl , p1k , and p2k , is an optimal solution to problem
(Pa(X)), then the optimal partition is:

X
1 = {l ∈ X : dl = 1}

X
2 = {l ∈ X : dl = 0}

and the maximum aggregated profit is:

�a
(X

1
, X

2
) =

n∑
k=1

(p1k + p2k)qk − 2S∗

For the firms to agree on the choice of the location equi-
librium previously obtained some equity criterion should be
satisfied. For instance, the average profit per facility each
firm obtains should be close to the global average profit
per facility that is defined as the aggregated profit divided
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Table 3 Results for � = 0.5

r + s r s X
1

X
2 �1

r
�2

s � �
a

r+s �
a
� �

a

2 1 1 3087 12 348

3 1 2 3 12,15 2891 5470 2305 13 831 13 831

4 1 3 11 2,15,18 3124 1969 1747 9031 13 975
2 2 2,18 11,15 2101 3136 1309 10 475 10 475

5 1 4 2 8,10,15,18 1561 3352 1510 14 971 15 097
2 3 2,18 8,10,15 2003 2423 1127 11 274 11 274

6 1 5 2 4,7,10,14,19 1732 2821 1375 15 837 16 496
2 4 7,14 2,4,10,19 1259 2428 1019 12 232 12 232
3 3 2,14,19 4,7,10 1714 1644 840 10 075 10 075

7 1 6 2 4,6,7,10,16,17 1708 2405 1201 16 139 16 821
2 5 6,16 2,4,7,10,17 935 2048 865 12 109 12 109
3 4 6,7,16 2,4,10,17 949 2035 785 10 986 10 986

8 1 7 2 4,5,6,10,13,16,17 1708 2096 1150 16 377 18 405
2 6 6,16 2,4,5,10,13,17 935 1746 902 12 347 14 428
3 5 5,6,16 2,4,10,13,17 733 1764 670 11 021 11 035
4 4 5,6,13,16 2,4,10,17 771 1885 664 10 626 10 626

9 1 8 2 5,6,10,13,16,19,21,22 1327 1856 1032 16 174 18 583
2 7 6,16 2,5,10,13,19,21,22 933 1522 810 12 522 14 575
3 6 5,6,16 2,10,13,19,21,22 732 1500 630 11 196 11 337
4 5 5,6,13,16 2,10,19,21,22 762 1544 598 10 770 10 770

10 1 9 2 1,5,6,10,13,16,20,21,22 1327 1668 937 16 340 18 750
2 8 6,16 1,2,5,10,13,20,21,22 907 1353 737 12 636 14 741
3 7 5,13,21 1,2,6,10,16,20,22 596 1388 575 11 502 11 502
4 6 5,6,13,16 1,2,10,20,21,22 749 1314 544 10 883 10 883
5 5 5,6,10,13,16 1,2,20,21,22 1039 984 506 10 116 10 116

by the total number of facilities (�a
(X

1
, X

2
)/(r + s)).

However, it is possible that, for a partition that maximizes
the aggregated profit, one of the firms gets much less profit
per facility than its competitor, and therefore some kind
of compensation would be required in order to obtain an
agreement.

An alternative way of selecting a partition is by including
equity constraints in the above formulation. The aim of such
constraints is to determine a location equilibrium, so that
both firms get similar profits per facility, if such equilib-
rium exists. Let �

a
denote the maximum aggregated profit,

which can be obtained by solving problem (Pa(X)). For
any �, 0���1, we consider the following equity constraint:
the average profit per facility each firm obtains is greater
than, or equal to, ��

a
/(r + s). Then, we can obtain a

location equilibrium verifying that constraint, for which

aggregated profit is maximum, by solving the following ILP
problem:

(Pa
� (X)) : max

n∑
k=1

(p1k + p2k )qk − 2S∗

s.t. p1k � plkdl + D(1 − dl), k ∈ K , l ∈ X

(11)

p2k � plk(1 − dl) + Ddl , k ∈ K , l ∈ X

(12)∑
l∈X

dl = r (13)

1

r

(
n∑

k=1

p2kqk − S∗
)

��
�

a

r + s
(14)
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Table 4 Results for � = 0.6

r + s r s X
1

X
2 �1

r
�2

s � �
a

r+s �
a
� �

a

2 1 1 3704 12 348

3 1 2 3 12,15 2891 5470 2766 13 831 13 831

4 1 3 2096 13 975
2 2 2,18 11,15 2101 3136 1571 10 475 10 475

5 1 4 1812 15 097
2 3 2,18 8,10,15 2003 2423 1353 11 274 11 274

6 1 5 2 4,7,10,14,19 1732 2821 1650 15 837 16 496
2 4 7,14 2,4,10,19 1259 2428 1223 12 232 12 232
3 3 2,14,19 4,7,10 1714 1644 1007 10 075 10 075

7 1 6 2 4,6,7,10,16,17 1708 2405 1442 16 139 16 821
2 5 2,17 4,6,7,10,16 1745 1667 1038 11 825 12 109
3 4 6,7,16 2,4,10,17 949 2035 942 10 986 10 986

8 1 7 2 4,5,6,10,13,16,17 1708 2096 1380 16 377 18 405
2 6 2,17 4,5,6,10,13,16 1745 1429 1082 12 062 14 428
3 5 2,5,13 4,6,10,16,17 974 1544 828 10 643 11 035
4 4 4,5,10,13 2,6,16,17 1238 1367 797 10 420 10 626

9 1 8 2 5,6,10,13,16,19,21,22 1327 1856 1239 16 174 18 583
2 7 2,19 5,6,10,13,16,21,22 1075 1251 972 10 906 14 575
3 6 2,19,22 5,6,10,13,16,21 1264 1170 756 10 812 11 337
4 5 5,6,13,16 2,10,19,21,22 762 1544 718 10 770 10 770

10 1 9 2 1,5,6,10,13,16,20,21,22 1327 1668 1125 16 340 18 750
2 8 6,16 1,2,5,10,13,20,21,22 907 1353 884 12 636 14 741
3 7 5,6,16 1,2,10,13,20,21,22 715 1309 690 11 310 11 502
4 6 5,6,13,16 1,2,10,20,21,22 749 1314 653 10 883 10 883
5 5 5,6,10,13,16 1,2,20,21,22 1039 984 607 10 116 10 116

1

s

(
n∑

k=1

p1kqk − S∗
)

��
�

a

r + s
(15)

dl ∈ {0, 1}, p1k �0, p2k �0, k ∈ K , l ∈ X

(16)

Observe that (Pa
� (X)) reduces to (Pa(X)) for � = 0.

In order to select a location equilibrium, a sequence of
problems (Pa

� (X)) can be solved for fixed increasing � values

until one not feasible problem is found. If � is the greater
value of � for which (Pa

� (X)) is feasible, firms could select
the location equilibrium given by the following partition:

X
1 = {l ∈ X : dl = 1}

X
2 = {l ∈ X : dl = 0}

where d̄l are the optimal values for variables dl in problem
(Pa

�̄
(X)).

5.2. An illustrative example

We present an example with real data in order to illus-
trate social cost minimization and how to select a location
equilibrium when multiple location equilibria exist. Both
market areas and location candidates are the Spanish cities
on the Iberian Peninsula with a population of over 4000
people (ie 1046 cities). As demand, qk , a proportion of the
total population of city k was taken. Delivered price pik
was taken proportional to the Euclidean distance between
cities i and k. The geographical coordinates and population
of each city (from the 2001 census) were obtained from
http://www.terra.es/personal/gps.2000 and http://www.ine.es,
respectively. The social cost minimization problem ((r + s)
−MEDIAN problem) was solved for r + s = 2, 3, . . . , 10.
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Table 5 Results for � = 0.7

r + s r s X
1

X
2 �1

r
�2

s � �
a

r+s �
a
� �

a

2 1 1 4322 12 348

3 1 2 3227 13 831

4 1 3 2446 13 975
2 2 2,18 11,15 2101 3136 1833 10 475 10 475

5 1 4 2114 15 097
2 3 2,18 8,10,15 2003 2423 1578 11 274 11 274

6 1 5 1925 16 496
2 4 2,19 4,7,10,14 1785 2003 1427 11 583 12 232
3 3 4,7,10 2,14,19 1644 1714 1175 10 075 10 075

7 1 6 2 4,6,7,10,16,17 1708 2405 1682 16 139 16 821
2 5 2,17 4,6,7,10,16 1745 1667 1211 11 825 12 109
3 4 4,7,10 2,6,16,17 1571 1367 1099 10 182 10 986

8 1 7 2 4,5,6,10,13,16,17 1708 2096 1610 16 377 18 405
2 6 2,17 4,5,6,10,13,16 1745 1429 1262 12 062 14 428
3 5 2,5,13 4,6,10,16,17 974 1544 966 10 643 11 035
4 4 4,5,10,13 2,6,16,17 1238 1367 930 10 420 10 626

9 1 8 1445 18 583
2 7 1134 14 575
3 6 2,19,22 5,6,10,13,16,21 1264 1170 882 10 812 11 337
4 5 2,19,21,22 5,6,10,13,16 1189 1094 838 10 227 10 770

10 1 9 2 1,5,6,10,13,16,20,21,22 1327 1668 1312 16 340 18 750
2 8 1032 14 741
3 7 2,5,13 1,6,10,16,20,21,22 837 1152 805 10 574 11 502
4 6 1,2,20,22 5,6,10,13,16,21 990 1121 762 10 688 10 883
5 5 5,6,10,13,16 1,2,20,21,22 1039 984 708 10 116 10 116

For the optimal solution X of each (r + s)−MEDIAN problem,
we solved both problem (Pa(X)) and problems (Pa

� (X)),
� = 0.5, 0.6, 0.7, 0.8, 0.9, for all combinations of r and s.
Optimal solutions to these problems are location equilibria.
All these ILP problems were solved by using the optimizer
FICO Xpress-Mosel (2009).

The different optimal locations obtained when solving all
the above mentioned (r + s)−MEDIAN problems are shown in
Table 1. The first column is a label to represent each location.
Columns 2 and 3 represent the number of the node and the
name of the corresponding city. The fourth column is the
number of inhabitants of each city. The geographical situation
of the cities is shown in Figure 2.

The results for the (Pa(X)) problem (location equilibria
maximizing aggregated profit) are shown in Table 2, where

the social cost (S(X)), the location equilibrium (X
1
and X

2
),

the average profit per facility each firm obtains (�
1
(X

1
,X

2
)

r

and �2
(X

1
,X

2
)

s ), and the maximum aggregated profit (�
a
), are

given for each one of the 25 scenarios considered. It is possible
to observe how social cost S(X) reduces as the number of
facilities to locate (r + s) increases. The reduction in social
cost per each additional facility is more important when the
number of facilities to locate is small. The location equilib-
rium is quite unstable to changes in the number of facilities
to locate. Nevertheless, as the number of facilities increases,
there seems to be a stable group of locations coincident in all
scenarios. The most frequently appearing nodes are 2, 10, 16,
and 6, in this order. Note that differences in average profit per
facility between firms are in some cases very important. For
example, when r + s = 8, average profit per facility of firm
2 is more than seven times the average profit per facility of
firm 1 when the difference in the number of facilities is high
(r = 1, s = 7), and more than two times when both firms
locate the same number of facilities (r = s = 4). For any fixed
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Table 6 Results for � = 0.8

r + s r s X
1

X
2 �1

r
�2

s � �
a

r+s �
a
� �

a

2 1 1 4939 12 348

3 1 2 3688 13 831

4 1 3 2795 13 975
2 2 2,18 11,15 2101 3136 2095 10 475 10 475

5 1 4 2416 15 097
2 3 2,18 8,10,15 2003 2423 1804 11 274 11 274

6 1 5 2199 16 496
2 4 2,19 4,7,10,14 1785 2003 1631 11 583 12 232
3 3 4,7,10 2,14,19 1644 1714 1343 10 075 10 075

7 1 6 1922 16 821
2 5 2,17 4,6,7,10,16 1745 1667 1384 11 825 12 109
3 4 4,7,10 2,6,16,17 1571 1367 1256 10 182 10 986

8 1 7 1840 18 405
2 6 1443 14 428
3 5 2,5,17 4,6,10,13,16 1273 1237 1103 10 006 11 035
4 4 4,5,10,13 2,6,16,17 1238 1367 1063 10 420 10 626

9 1 8 1652 18 583
2 7 1296 14 575
3 6 2,19,22 5,6,10,13,16,21 1264 1170 1008 10 812 11 337
4 5 2,19,21,22 5,6,10,13,16 1189 1094 957 10 227 10 770

10 1 9 1500 18 750
2 8 1179 14 741
3 7 2,6,16 1,5,10,13,20,21,22 1047 932 920 9667 11 502
4 6 1,2,20,22 5,6,10,13,16,21 990 1121 871 10 688 10 883
5 5 5,6,10,13,16 1,2,20,21,22 1039 984 809 10 116 10 116

value of r + s, it is observed that average profit per facility of
a firm increases when the number of its facilities increases.
On the other hand, it is possible to see that the aggregated
profit reduces as s −r reduces too. This is motivated by the
effect of the increase in competition, and therefore the reduc-
tion in individual profits. Observe that different profits are
obtained when the firms have the same number of facilities.
This is explained by the fact that customers buy from the
closest facility, then the markets captured by the firms are
different (for instance, see in Table 2 the optimal facility loca-
tions obtained for r = s = 2), and the firms obtain different
profits.

The results for the (Pa
� (X)) problems are shown in Tables 3

to 7. These tables contain location equilibria maximizing
aggregated profit but verifying the equity constraints. The
optimal value of (Pa

� (X)) is denoted by �
a
� and it is shown

in column 9. These results are summarized in Figure 3,

where for each � value the first bar contains three levels:
number of scenarios in which the found equilibrium is
different form the one obtained for � = 0 (top level); number
of scenarios in which the found equilibrium is the same
as the one obtained for � = 0 (mid level); and number of
scenarios in which the equilibrium is lost (bottom level). The
second and third bars are the maximum percentage deviation
and the average percentage deviation of �a

� with respect

to �
a
, respectively. The percentage deviation is measured

by 100(�
a − �

a
�)/�

a
. We see that for some scenarios,

as � increases, it is not possible to find any equilibrium
that satisfies the equity constraints. Furthermore, new loca-
tion equilibria for other scenarios may appear when equity
constraints are considered. Thus, for � = 0.5 there is one
scenario without location equilibrium and 12 scenarios with
a new location equilibrium, and for � = 0.9 there are six
scenarios where the location equilibrium is lost in which
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Table 7 Results for � = 0.9

r + s r s X
1

X
2 �1

r
�2

s � �
a

r+s �
a
� �

a

2 1 1 5557 12 348

3 1 2 4149 13 831

4 1 3 3144 13 975
2 2 2357 10 475

5 1 4 2717 15 097
2 3 2029 11 274

6 1 5 2474 16 496
2 4 1835 12 232
3 3 4,7,10 2,14,19 1644 1714 1511 10 075 10 075

7 1 6 2163 16 821
2 5 2,17 4,6,7,10,16 1745 1667 1557 11 825 12 109
3 4 1412 10 986

8 1 7 2071 18 405
2 6 1623 14 428
3 5 1241 11 035
4 4 4,5,10,13 2,6,16,17 1238 1367 1195 10 420 10 626

9 1 8 1858 18 583
2 7 1457 14 575
3 6 2,19,22 5,6,10,13,16,21 1264 1170 1134 10 812 11 337
4 5 2,19,21,22 5,6,10,13,16 1189 1094 1077 10 227 10 770

10 1 9 1687 18 750
2 8 1327 14 741
3 7 1035 11 502
4 6 1,2,20,22 5,6,10,13,16,21 990 1121 979 10 688 10 883
5 5 1,2,20,21,22 5,6,10,13,16 984 1039 910 10 116 10 116

there was a location equilibrium for � = 0.8. For � = 0.9
there is a location equilibrium in seven out of 25 scenarios.
Observe that the width of the bottom level increases while
the width of the mid level decreases when � increases. The
maximum percentage deviation of �

a
� with respect to �

a
is

25, which is obtained for � = 0.8. The average percentage
deviation increases when � increases and it varies from
5.9 to 20.4.

For each � value, we have also evaluated the percentage
deviation of the average profit per facility of each firm with
respect to the global average profit per facility which are

given by 100 (�1
/r−�

a
/r+s)

�
a
/r+s

and 100 (�2
/s−�

a
/r+s)

�
a
/r+s

, respec-

tively. Thus, the percentage deviations obtained from Table 2,
corresponding to r + s = 4 are −55,3 (r = 1) and 19,7 (r
= 2) for firm 1 and 18,4 (s = 3) and −19,8 (s = 2) for
firm 2, then the average deviations are −17,8 for firm 1 and
−0,7 for firm 2. The average deviations corresponding to the

Figure 3 Results for the (Pa
� (X)) problems.

two firms for each r + s value, without equity constraints
(� = 0) and with equity constraints (� = 0.5, . . . , 0.9), are
shown in Figure 4, where it is observed that deviations above
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Figure 4 Average deviations for each r + s value and each � value.

the global average profit per facility are smaller than devia-
tions below the global average profit per facility. Normally,
one firm deviates above and another deviates below, but
in some cases both firms deviate below the global average
profit per facility (for instance, � = 0.7 and r + s = 7, 8,10).
Observe that deviations decrease when � increases. The
maximum deviation for �=0.9 varies form 2% (r + s = 6) to
8% (r + s = 9).

Finally, as a way of evaluating the loss of efficiency (reduc-
tion in aggregated profit) in the proposed solution when intro-
ducing equity constraints, we compare Tables 2 and 7 (� = 0
and � = 0.9, respectively) with respect to the seven scenarios
with equilibrium. It can be observed how in two scenarios the
solution proposed in each one of them is the same in both
tables, and therefore efficiency is not lost (r = s = 3 and
r = s = 5); in three scenarios the reduction in aggregated
profit is close to 2% (r = 2, s = 5; r = s = 4; r = 4, s = 6);
and in the other two scenarios this reduction is close to 5%
(r = 3, s = 6; r = 4, s = 5).

6. Extensions to oligopoly and conclusions

The previous results for two firms can directly be extended
to oligopoly. In fact, long-term price competition for a fixed
number U of firms, which locate several facilities each, leads
to a price equilibrium in which each firm sets the lowest
delivered cost of its competitors as the price in market k,
if that firm is the only one with minimum delivered cost in
market k. Otherwise, the firm sets its minimum delivered cost
as the price in market k. In a similar way to the duopoly
case, equilibrium prices are determined for the chosen facility
locations. For any location space, it is possible to see that the
locations of the firms are in equilibrium if each firmminimizes
the social cost with respect to the competitors’ fixed locations.
In the case of the location space being a network, a location
equilibrium also exists at the nodes.

As in the duopoly case, a location equilibrium can be
obtained by minimizing social cost. This problem can be
formulated in discrete space as an ILP problem by taking
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variables xui and zuik , u = 1, . . . ,U , which in turn becomes a
(
∑U

u=1r
u) − MEDI AN problem if location candidates and

delivered prices are the same for all competing firms, where
ru is the number of facilities to be located for firm u. Further-
more, ILP formulations similar to the ones in the duopoly
case, can be used to select a location equilibrium when equity
constraints are considered.

We have presented a general framework of the location-
price Bertrand game where minimizers of the social cost
are location equilibria, and shown that a location equilib-
rium in discrete location space can be found by solving an
ILP problem. A case where multiple location equilibria exist
has been considered, for which ILP formulations, without
and with equity constraints that depends on a parameter �,
0���1, have been proposed to select one location equilib-
rium. The higher the value of � the more equity in profit
per facility for each competing firms is obtained, however a
reduction in aggregated profit may occur. An example with
real data has been solved in 25 scenarios to point out the exis-
tence of multiple equilibria and how the equity constraints
affect them. For the highest value of � studied (�=0.9), there
exist a location equilibrium in more than 25% of the scenarios
considered. In all the scenarios with equilibrium for � = 0.9,
the loss of efficiency (reduction in aggregated profit) in less
than 5%, and in 5 of these 7 scenarios the loss of efficiency
is less than 2%.

In a network we have shown that, under two common
assumptions, the problem of determining a location equilib-
rium is reduced to a discrete problem in which the location
candidates are the nodes. Then the proposed procedures can
be used when the location space is a network.
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