GUÍA DOCENTE

44525 - FUNDAMENTOS DE DISEÑO DE MÁQUINAS

CURSO: 2022/23

CENTRO: 105 - Escuela de Ingenierías Industriales y Civiles

TITULACIÓN: 4042 - Grado en Ingeniería Mecánica

ASIGNATURA: 44525 - FUNDAMENTOS DE DISEÑO DE MÁQUINAS

Vinculado a : (Titulación - Asignatura - Especialidad)

5040-MU en Ingeniería Industrial - 51149-FUNDAMENTOS DE DISEÑO DE MÁQUINAS - 12 5040-MU en Ingeniería Industrial - 51157-FUNDAMENTOS DE DISEÑO DE MÁQUINAS - 13 5040-MU en Ingeniería Industrial - 51166-FUNDAMENTOS DE DISEÑO DE MÁQUINAS - 14

CÓDIGO UNESCO: 3313.15 TIPO: Obligatoria CURSO: 3 SEMESTRE: 1º semestre

CRÉDITOS ECTS: 4,5 Especificar créditos de cada lengua: ESPAÑOL: 4,5 INGLÉS: 0

SUMMARY

The subject Fundamentals of Machine Design contributes to the professional profile by providing the student with the necessary knowledge in basic concepts related to the design of machine elements. The main goal of this subject is to provide the basis for the design and calculation of machine elements, so that at the end of the learning they have the knowledge of the machine design process and strengthen the basis for the design and calculation of the core components of a machine.

REQUISITOS PREVIOS

Es muy recomendable para el éxito en la asignatura que el alumno tenga superadas las asignaturas de primer curso: Cálculo I, Cálculo II, Física I y Ciencia de Materiales; y sobre todo, las asignaturas de segundo curso: Física III (particularmente en lo referido a Mecánica), Teoría de Máquinas y Mecanismos y Resistencia de Materiales.

Plan de Enseñanza (Plan de trabajo del profesorado)

Contribución de la asignatura al perfil profesional:

En el campo de la Ingeniería Mecánica el empleo de mecanismos y máquinas es una necesidad extendida e inevitable, razón por la cual se precisa una cada vez mayor y mejor formación de técnicos e ingenieros en esta área.

La asignatura Fundamentos de Diseño de Máquinas contribuye al perfil profesional proporcionando al estudiante los conocimientos necesarios en conceptos básicos relacionados con el diseño de elementos de máquinas, de tal manera que le pueda ser útil como herramienta para el desempeño posterior de la profesión de ingeniero cuando precise calcular elementos de máquinas o utilizar y mantener máquinas existentes.

Competencias que tiene asignadas:

COMPETENCIAS GENERALES:

- G3 COMUNICACIÓN EFICAZ ORAL Y ESCRITA. Comunicarse de forma oral y escrita con otras personas sobre los resultados del aprendizaje, de la elaboración del pensamiento y de la toma de decisiones; participar en debates sobre temas de la propia especialidad.
- G5 USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN. Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.
- G6 APRENDIZAJE AUTÓNOMO. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar este conocimiento.
- T3: Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- T4: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas.
- T6: Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.

COMPETENCIAS ESPECÍFICAS:

MTEM2: Conocimientos y capacidades para el cálculo, diseño y ensayo de máquinas.

Objetivos:

El objetivo fundamental de esta asignatura es proporcionar las bases para el diseño y cálculo de elementos de máquinas a los futuros graduados en Ingeniería Mecánica, de tal manera que al finalizar el aprendizaje estos hayan cumplido dos objetivos básicos:

- Conocer el proceso de diseño de máquinas y afianzar las bases para el diseño y cálculo de los componentes de las mismas.
- Ampliar conocimientos de la Teoría de Máquinas y Mecanismos en las áreas de vibraciones y equilibrado.

Contenidos:

Del listado de contenidos que VERIFICA asigna a la materia Herramientas de Diseño de Máquinas, se han extraído los siguientes:

- Análisis de Vibraciones Mecánicas y Equilibrado
- Introducción al Diseño de Máquinas.
- Relaciones cargas esfuerzos deformaciones.
- Teorías de fallas: Estáticas, fatiga y superficiales.
- Aspectos Generales de la Construcción y Ensayo de Máquinas

Así, en esta asignatura se verá el siguiente temario:

TEMA 0. PRESENTACIÓN DE LA ASIGNATURA

- * Conceptos profesionales y académicos de Fundamentos de Diseño de Máquinas
- * Exposición del Programa, Metodología y Bibliografía

TEMA 1. INTRODUCCIÓN A FUNDAMENTOS DE DISEÑO DE MÁQUINAS

- 1.1 Introducción al Diseño
- 1.2 Proceso de Diseño de Máquinas
- 1.3 Normativas y Reglamentación

- 1.4 Unidades
- 1.5 Factores de Seguridad
- * Coeficiente de Seguridad
- * Factores que intervienen en la elección del coeficiente de seguridad
- * Valores prácticos de los coeficientes de seguridad
- * Seguridad en el Diseño de Máquinas
- 1.6 Factores Económicos
- 1.7 Consideraciones Estadísticas sobre los factores en Diseño de Máquinas

TEMA 2. MATERIALES PARA MÁQUINAS. CARACTERÍSTICAS, SELECCIÓN Y PROCESOS

- 2.1 Introducción
- 2.2 Características de los materiales para Máquinas
- 2.3 Clasificación de los materiales para Máquinas
 - * Metales
- * Polímeros
- * Cerámicas
- * Materiales Compuestos
- 2.4 Tratamientos térmicos y superficiales de los metales
- 2.5 Selección de Materiales

TEMA 3. DETERMINACIÓN DE CARGAS

- 3.1 Introducción
- 3.2 Clasificación de las Cargas
- 3.3 Métodos de determinación de Cargas
- 3.4 Diagrama de Sólido Libre
- 3.5 Determinación de cargas mediante ecuaciones estáticas
- 3.6 Determinación de cargas mediante ecuaciones dinámicas
- 3.7 Cargas por impacto.

TEMA 4. ESFUERZOS, TENSIONES Y DEFORMACIÓN

- 4.1 Tensiones y Deformaciones
- 4.2 Tipos de esfuerzos
- 4.3 Relación entre Esfuerzos, Tensiones y Deformaciones
- 4.4 Tensiones Combinadas
- 4.5 Concentración de Tensiones
- 4.6 Elementos curvos en flexión
- 4.7 Tensiones en elementos cilíndricos (presión y contracción)
- 4.8 Tensiones en superficies curvas en contacto
- 4.9 Compresión Axial Pandeo

TEMA 5. CRITERIOS DE FALLO ESTÁTICO

- 5.1 Introducción a los modos de fallo en máquinas
- 5.2 Clasificación de los criterios de Falla estática
- 5.3 Criterios de Fallo para Materiales Dúctiles
- * Criterio de Von-Mises
- * Criterio de Mohr
- 5.4 Criterios de Fallo para Materiales Frágiles
- * Criterio de la Tensión Normal Máxima
- * Criterio de Mohr Modificado
- 5.5 Introducción a la Mecánica de la Fractura

TEMA 6. CRITERIOS DE FALLO POR FATIGA

- 6.1 Introducción al fenómeno de Fatiga
 - * Breve introducción histórica
- * Mecanismo del Fallo por Fatiga
- * Modelos de Fallo por Fatiga
- 6.2 Criterios de Diseño para prevenir la Fatiga
- 6.3 Cálculo de Tensiones de Fatiga
- 6.4 Resistencia a Fatiga
- * Resistencia Teórica a Fatiga
- * Límite de Resistencia a Fatiga
- * Resistencia a Fatiga corregida
- * Trazado de Diagramas Estimados de Resistencia a Fatiga
- 6.5 Factores de Concentración de Tensiones a Fatiga
 - * Sensibilidad a la grieta
- 6.6 Criterios de Fallo para Fatiga de Alto Ciclaje
 - * Criterio de Goodman
 - * Criterio de Goodman Modificado
 - * Criterio de Soderberg
 - * Criterio de Gerber
- 6.7 Determinación del Coeficiente de Seguridad a Fatiga
- 6.8 Diseño a fatiga en el caso de Tensiones Multiaxia

TEMA 7. FALLAS SUPERFICIALES

- 7.1 Introducción
- 7.2 Geometría y Contacto de las Superficies
- 7.3 Fricción
- 7.4 Tipos de Desgates
 - * Desgaste por Adhesión
 - * Desgaste por Abrasión
 - * Desgaste por Corrosión
- 7.5 Modelos de Fallo por Fatiga Superficial
- 7.6 Resistencia a la Fatiga Superficial

TEMA 8. VIBRACIONES MECÁNICAS

- 8.1 Introducción al estudio de vibraciones mecánicas.
- 8.2 Sistemas vibrantes de un grado de libertad (1 GDL)
 - * Formulación general de la ecuación de movimiento
 - * Vibraciones libres no amortiguadas (Método general)
 - * Vibraciones libres amortiguadas
 - * Amortiguamiento viscoso
 - * Vibraciones forzadas no amortiguadas
 - * Fuerza de excitación armónica
 - * Vibraciones forzadas amortiguadas
 - * Fuerza de excitación armónica
 - * Vibraciones forzadas amortiguadas
 - * Excitación por fuerza impulsiva.
- 8.3 Aplicaciones prácticas de los sistemas vibrantes 1 GDL
- * Vibraciones excitadas por rotores desequilibrados
- * Vibraciones excitadas por movimiento de la base
- * Transmisibilidad de las vibraciones sobre soportes fijos

TEMA 9. EQUILIBRADO DE MECANISMOS

- 9.1 Conceptos básicos sobre desequilibrio de los mecanismos
- 9.2 Introducción al equilibrado de mecanismos

- * Concepto de equilibrado de mecanismos
- * Formas de proceder al equilibrado de mecanismos
- * Clasificación del equilibrado de mecanismos
- 9.3 Equilibrado de miembros en rotación
- * Equilibrado con desequilibrio conocido
- * Equilibrado con desequilibrio desconocido
- 9.4 Máquinas de equilibrar
 - * Máquinas para equilibrado estático
 - * Máquinas para equilibrados dinámicos
- 9.5 Recomendaciones para el equilibrado de rotores
 - * Tolerancias

Metodología:

La metodología que se plantea para alcanzar los objetivos didácticos fijados se concreta en:

Clases Teóricas (A1): Consistentes en clases magistrales apoyadas en los medios tecnológicos disponibles. El número de horas destinadas a estas clases es de 30.

Clases de Problemas (A2): En la que el profesor plantea y orienta a los alumnos para resolver los problemas donde se profundiza en los conceptos impartidos en las clases teóricas. El número de horas destinadas a estas clases es de 15.

Actividad no presencial: Búsqueda de información (A8)

Actividad no presencial: Redacción de informes (A9)

El seguimiento de la asignatura también se llevará a cabo a través del Campus Virtual de la ULPGC

MODALIDAD NO PRESENCIAL

En el caso de no poder desarrollar la docencia de manera presencial, las Clases Teóricas (A1) se impartirán por el Campus Virtual o por una plataforma similar en el caso de dificultad de uso del mismo. Las Clases de Problemas (A2) se desarrollarán también con ayuda del campus virtual.

Evaluacion:

Criterios de evaluación

Se tendrán en cuenta los dos siguientes de los varios que contempla la Memoria Verifica del Título:

AE2. Valoración de ejercicios prácticos de aula

AE5. Exámenes

Los exámenes consistirán principalmente en resolución de problemas, aunque también se podrán plantear cuestiones de teoría, tanto de razonamientos breves como tipo test.

Mediante AE2 se evaluarán las competencias MTEM2, T3, T4, T6, G3-N1 y G5

Mediante AE5 se evaluarán las competencias MTEM2, T3, T4 y T6

USO DE MEDIOS FRAUDULENTOS:

El estudiante que incurra en copia en la realización de exámenes (detectable en el momento de realización del examen o en la corrección posterior) tendrá la calificación de Suspenso (0) en la convocatoria a la que pertenezca dicho examen. El estudiante que entregue un trabajo plagiado total o parcialmente, conllevará el suspenso (0) del documento presentado. Dependiendo de la gravedad del plagio, puede conllevar la calificación de Suspenso (0) en la convocatoria a la que pertenezca dicho trabajo.

Los estudiantes que incurran en copia o plagio, además, podrán ser objeto de la debida sanción que la EIIC o la ULPGC consideren oportunas

Sistemas de evaluación

Convocatoria Ordinaria:

Se realizarán dos exámenes parciales a lo largo del curso. El primero abarcará los temas 1 a 5 y el segundo los temas 6 a 9. En el caso de no superar alguno(s) de los parciales, el día de la convocatoria ordinaria se podrá realizar el examen de uno o los dos parciales. También se podrán presentar el día de la convocatoria ordinaria para subir nota. La nota obtenida en cada parcial se guardará hasta la convocatoria extraordinaria.

Se valorará la resolución de ejercicios o trabajos propuestos en las prácticas de aula. Estos ejercicios se entregarán por medio del Campus Virtual o e-mail.

Convocatoria Extraordinaria

Se realizará un examen final, dividido en dos partes, correspondientes al primer y al segundo parcial.

Convocatoria Especial

Se realizará un único examen abarcando el contenido completo de la asignatura.

MODALIDAD NO PRESENCIAL

En el caso de no poder efectuar los exámenes de manera presencial, se realizarán los exámenes mediante el uso del Campus Virtual de la ULPGC o similar en caso de problemas técnicos con éste último.

Criterios de calificación

Convocatoria Ordinaria:

Para aprobar es necesario tener aprobados los dos parciales. La nota media de los exámenes (AE5) representa el 90% de la nota final. La nota media de los ejercicios prácticos de aula (AE2) representa un 10% de la nota final.

Convocatoria Extraordinaria

La nota de examen (AE5) será la media de los dos parciales, teniendo en cuenta que es necesario aprobar cada parcial. La nota final será el 90% del examen más el 10% de los trabajos de aula realizados durante el curso (AE2).

Convocatoria Especial

La nota final será el 90% de la obtenida en el examen (AE5) más el 10% de los trabajos de aula realizados durante el curso (AE2).

En las convocatorias Ordinaria y Extraordinaria, en el caso de que un alumno no supere uno de los dos parciales, su nota será la media de los parciales en el caso de que esta media sea menor o igual que 4,5. En el caso de que la nota media sea mayor que 4,5, la nota final de la asignatura será 4,5.

Plan de Aprendizaje (Plan de trabajo de cada estudiante)

Tareas y actividades que realizará según distintos contextos profesionales (científico, profesional, institucional, social)

Las actividades que desarrollará el estudiante serán de los siguientes tipos:

- a) Preparación individual de las clases.
- b) Búsqueda de información, tanto en la bibliografía recomendada como en otros recursos (Internet, libros, revistas, etc.)
- c) Resolución de problemas propuestos.

Temporalización semanal de tareas y actividades (distribución de tiempos en distintas actividades y en presencialidad - no presencialidad)

La Temporalización en horas será la siguiente:

	TEMAS	Teoría	Pr.Aula	No Presencial
Semana 1	0+1	0.5+1.5	1	4.5
Semana 2	2	2	1	4.5
Semana 3	3	2	1	4.5
Semana 4	3+4	1 + 1	1	4.5
Semana 5	4	2	1	4.5
Semana 6	4+5	1 + 1	1	4.5
Semana 7	5	2	1	4.5
Semana 8	5+6	0+2	1	4.5
Semana 9	6	2	1	4.5
Semana 10) 6	2	1	4.5
Semana 11	1 7	2	1	4.5
Semana 12	2 8	2	1	4.5
Semana 13	8	2	1	4.5
Semana 14	1 9	2	1	4.5
Semana 15	5 9	2	1	4.5

Recursos que tendrá que utilizar adecuadamente en cada uno de los contextos profesionales.

Para poder llevar a cabo las tareas encomendadas el alumno ha de ser capaz de manejar varios recursos: Libros de texto, búsquedas en Internet, procesadores de texto, hojas de cálculo, artículos en revistas y software o apps de uso ingenieril, así como el material relacionado con los problemas de aula.

Resultados de aprendizaje que tendrá que alcanzar al finalizar las distintas tareas.

- * Conocer los elementos componentes de la máquinas, su uso y mantenimiento
- * Conocer los aspectos generales de la construcción y ensayo de máquinas
- * Adquirir la visión espacial y mejorar la comprensión de máquinas y elementos de máquinas

Plan Tutorial

Atención presencial individualizada (incluir las acciones dirigidas a estudiantes en 5ª, 6ª y 7ª convocatoria)

Los horarios de las tutorías de los profesores participantes se remitirán al Departamento de Ingeniería Mecánica, quien los publicará según normativa vigente.

Para los estudiantes que se encuentren en 5ª, 6ª o 7ª convocatoria se establecerán tutorías periódicas en el horario acordado por estudiante y tutor y serán firmadas por ambos. Las tutorías serán individuales o grupales, en función del número de estudiantes por asignatura en estas circunstancias, y se desarrollarán en una franja horaria semanal máxima de dos horas, de acuerdo a lo establecido en el art. 7 del Reglamento de Evaluación de los Resultados de Aprendizaje. Las acciones específicas de asesoramiento y apoyo llevadas a cabo en estas tutorías variarán en función de las circunstancias del estudiante

Atención presencial a grupos de trabajo

Los grupos de trabajo se reunirían con el profesor en el horario de tutorías generales, previa cita con el profesor.

Atención telefónica

Oscar Martel Fuentes

Tfno. despacho 928451899

Tfno. móvil facilitado en el aula

Atención virtual (on-line)

Se podrán efectuar consultas por dos vías

E-mail: oscar.martel@ulpgc.es

WhatsApp: mediante número móvil facilitado en el aula

Se podrán enviar texto, imágenes y/o videos con las consultas para ser resueltas por el profesor

Datos identificativos del profesorado que la imparte.

Datos identificativos del profesorado que la imparte

Dr./Dra. Oscar Martel Fuentes

(COORDINADOR)

Departamento: 272 - INGENIERÍA MECÁNICA Ámbito: 545 - Ingeniería Mecánica

Área: 545 - Ingeniería Mecánica

Despacho: INGENIERÍA MECÁNICA

Teléfono: 928451899 Correo Electrónico: oscar.martel@ulpgc.es

Bibliografía

[1 Básico] Diseño en ingeniería mecánica /

Joseph E. Shigley, Charles R. Mischke. McGraw-Hill,, México [etc.]: (2002) - (6^a ed.) 9701036468

[2 Básico] Machine design :an integrated approach /

Robert L. Norton.

Pearson,, Upper Saddle River, New Jersey: (2011) - (4th ed.)

9780132118873 (CD-Rom)

[3 Básico] Fundamentos de mecanismos y máquinas para ingenieros /

Roque Calero Pérez, José Antonio Carta González.

McGraw-Hill,, Madrid: (1998)

844812099X

[4 Básico] Teoría y problemas de vibraciones mecánicas /

William W. Seto.

McGraw-Hill,, México: (1970)

[5 Recomendado] El diseño mecánico /

Antonio Serrano Nicolás. Mira Editores,, Zaragoza : (1999) 8489859795

[6 Recomendado] Elementos de máquinas /

Bernard J. Hamrock, Bo O. Jacobson, Steven R. Schmid. McGraw-Hill,, México : (2000) 970102799X

[7 Recomendado] Análisis de fatiga en máquinas /

Rafael Avilés. Paraninfo,, Madrid : (2005) 9788497323444

[8 Recomendado] Diseño en ingeniería mecánica de Shigley /

Richard G. Budynas, J. Keith Nisbett; revisión técnica, Miguel Ángel Ríos Sánchez. McGraw-Hill,, México [etc.]: (2008) - (8ª ed.) 9789701064047

[9 Recomendado] Diseño de elementos de máquinas /

Robert L. Mott.

Prentice-Hall Hispanoamericana,, México: (1992) - (2ª ed.)
9688805750

[10 Recomendado] Diseño de máquinas /

Robert L. Norton.
Pearson,, México: (1999)
9701702573