

GUÍA DOCENTE CURSO: 2019/20

44529 - DISEÑO Y CÁLCULO DE ESTRUCTURAS

CENTRO: 105 - Escuela de Ingenierías Industriales y Civiles

TITULACIÓN: 4042 - Grado en Ingeniería Mecánica

ASIGNATURA: 44529 - DISEÑO Y CÁLCULO DE ESTRUCTURAS

Vinculado a : (Titulación - Asignatura - Especialidad)

5040-MU en Ingeniería Industrial - 51152-DISEÑO Y CÁLCULO DE ESTRUCTURAS - 12 5040-MU en Ingeniería Industrial - 51170-DISEÑO Y CÁLCULO DE ESTRUCTURAS - 14

CÓDIGO UNESCO: 3305.32 TIPO: Obligatoria CURSO: 3 SEMESTRE: 2º semestre

CRÉDITOS ECTS: 6 Especificar créditos de cada lengua: ESPAÑOL: 6 INGLÉS:

SUMMARY

This course aims at providing students with a solid background on the principles of structural

engineering design for the degree of Mechanical Engineers. Students will be exposed to the theories and concepts of materials design and analysis at the element and system levels. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hands-on design experience and skills will be gained and learned through problem sets. Different types of loads, like live loads, dead loads, wind loads, earthquake loads, thermal loads, dynamic loads, settlement loads will be studied and resulting stresses will be developed. Matrix stiffness, grillage, and finite element analysis for bars will be introduced. Topics also will include: failure mechanisms and design limit states will be developed for beams and methods for the non-linear analysis of structures also called plastic analysis.

LEARNING OUTCOMES

According to the Verification of the Degree (Subject: Mechanics of Continuous Media and Structures):

- 1. Understand the basic hypothesis of structural behavior. Understand the relationship between the real structure and the calculation model.
- 2. Understand and apply the equations of linear elasticity to the resolution of problems related to obtaining the response in stresses / strains / displacements of mechanical parts or continuous structures subjected to static load.
- 3. To develop the capacity for the creation of models of Finite Elements that allow calculating the response of mechanical parts, continuous structures or bar structures subjected to static load.
- 4. Know, understand and apply current regulations in all aspects related to the design and calculation of an industrial structure.
- 5. Acquire skills to apply the concepts learned in structural design.

OBJECTIVES

- 1.- Understand the basic hypothesis of structural behavior. Understand the relationship between the real structure and the calculation model.
- 2.- Understand, understand and apply procedures and methodologies to obtain the response of bar structures subject to static loading.
- 3.- Understand the behavior of the most common structural configurations in industrial engineering

- 4.- Acquire skills to apply and guide the concepts learned in the design of the most appropriate structure in each case.
- 5.- The application of the competences, Generic, Nuclear, and Transversal related to the field of study of the subject will be taken into account through works and memories that students present throughout the course. However, they are not subject to specific evaluation

REQUISITOS PREVIOS

Requisitos previos (Recomendación)

- 1.- Cálculo I.
- 2.- Cálculo II.
- 3.- Física I
- 4.- Resistencia de Materiales.

Prerequisites (Recommendation)

- 1.- Calculation I.
- 2.- Calculation II.
- 3.- Physics I
- 4. Strength of Materials.

Plan de Enseñanza (Plan de trabajo del profesorado)

Contribución de la asignatura al perfil profesional:

El conocimiento de las bases teóricas sobre el comportamiento estructural es determinante en el análisis y diseño de edificaciones industriales y dispositivos mecánicos en general, ámbitos en los que desarrollan su actividad los profesionales con esta titulación.

The knowledge of the theoretical bases on the structural behavior is determinant in the analysis and design of industrial buildings and mechanical devices in general, areas in which the professionals with this degree develop their activity.

Competencias que tiene asignadas:

COMPETENCIAS BÁSICAS Y GENERALES

- G4 TRABAJO EN EQUIPO. Ser capaz de trabajar como miembro de un entorno y equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
- G3 COMUNICACIÓN EFICAZ ORAL Y ESCRITA. Comunicarse de forma oral y escrita con otras personas sobre los resultados del aprendizaje, de la elaboración del pensamiento y de la toma de decisiones; participar en debates sobre temas de la propia especialidad.
- G5 USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN. Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.
- G6 APRENDIZAJE AUTÓNOMO. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar este conocimiento.

- T3 Conocimiento en materias básicas de la rama de ingeniería y arquitectura y materias tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- T4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas.
- T6 Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.

COMPETENCIAS TRANSVERSALES

- N1 Comunicarse de forma adecuada y respetuosa con diferentes audiencias (clientes, colaboradores, promotores, agentes sociales, etc.), utilizando los soportes y vías de comunicación más apropiados (especialmente las nuevas tecnologías de la información
- y la comunicación) de modo que pueda llegar a comprender los intereses, necesidades y preocupaciones de las personas y organizaciones, así como expresar claramente el sentido de la misión que tiene encomendada y la forma en que puede contribuir, con sus competencias y conocimientos profesionales, a la satisfacción de esos intereses, necesidades y preocupaciones.
- N2 Cooperar con otras personas y organizaciones en la realización eficaz de funciones y tareas propias de su perfil profesional, desarrollando una actitud reflexiva sobre sus propias competencias y conocimientos profesionales y una actitud comprensiva y empática hacia las competencias y conocimientos de otros profesionales.

COMPETENCIAS ESPECÍFICAS

MTEM5 - Conocimientos y capacidad para el cálculo y diseño de estructuras y construcciones industriales.

Objetivos:

- 1.- Comprender las hipótesis básicas de comportamiento estructural. Comprender la relación entre la estructura real y el modelo de cálculo.
- 2.- Conocer, entender y aplicar procedimientos y metodologías para obtener la respuesta de estructuras de barras sometidas a carga estática.
- 3.- Comprender el comportamiento de las configuraciones estructurales más habituales en la

ingeniería industrial

- 4.- Adquirir destreza para aplicar y orientar los conceptos aprendidos en el diseño de la estructura más adecuada en cada caso.
- 5.- La aplicación de las competencias, Genéricas, Nucleares, y Transversales relacionadas con el

campo de estudio de la materia se tendrán en cuenta a través de trabajos y memorias que los

alumnos presentan a lo largo del curso. Sin embargo no son objeto de evaluación específica.

OBJECTIVES

- 1.- Understand the basic hypothesis of structural behavior. Understand the relationship between the real structure and the calculation model.
- 2.- Understand, understand and apply procedures and methodologies to obtain the response of bar structures subject to static loading.
- 3.- Understand the behavior of the most common structural configurations in industrial

engineering

- 4.- Acquire skills to apply and guide the concepts learned in the design of the most appropriate structure in each case.
- 5.- The application of the competences, Generic, Nuclear, and Transversal related to the field of study of the subject will be taken into account through works and memories that students present throughout the course. However, they are not subject to specific evaluation

Contenidos:

Los Contenidos que figuran en la Memoria Verifica del Título de Grado en Ingeniería Mecánica relacionados con esta asignatura en el contexto de su materia son:

- El Método de los Elementos Finitos aplicado a la resolución de problemas que impliquen a elementos mecánicos o estructuras industriales.
- Normativa de aplicación para el diseño y análisis estructural.
- Introducción al Diseño Estructural.

Se presenta a continuación el desarrollo de los anteriores puntos a través de los siguientes temas:

Tema 1.-

Introducción. Conceptos previos. Hipótesis de partida. Ecuaciones básicas.

Tema 2.-

Método Directo de la Rigidez. Matriz de rigidez de una estructura. Propiedades.

Tema 3.-

Introducción técnicas matriciales de cálculo. Discretización, elementos, nodos. Grados de libertad. Sistemas de referencia. Operaciones matriciales básicas. Condiciones de contorno esenciales y naturales.

Tema 4.-

Estructuras articuladas. Comportamiento. Tipologías. Ecuación diferencial de gobierno. Matriz de Rigidez del elemento. Síntesis Matriz de Rigidez Global.

Tema 5.-

Estructuras de nudos rígidos. Comportamiento. Esfuerzos. Ecuaciones de equilibrio. Ecuación diferencial de gobierno. Matriz de rigidez del elemento. Síntesis Matriz de rigidez global.

Tema 6.-

Acciones no nodales I. Cargas aplicadas en barras. Vector de cargas equivalente.

Tema 7.-

Acciones no nodales II. Cargas térmicas, tensores, cargas de montaje.

Tema 8.-

Aspectos complementarios. Apoyos elásticos y no-concordantes. Cargas debidas al asiento de los mismos.

Tema 9.-

Condensación estática. Grados de libertad maestros. Elementos con libertades. Subestructuración.

Tema 10.-

Acoplamiento entre grados de libertad.

Tema 11. Introducción al cálculo plástico.

Introducción al análisis no lineal y criterios de plastificación. Rotula plástica. Flexión plástica de vigas.

Análisis elástico-perfectamente plástico y análisis rígido-plástico. Métodos para el análisis no lineal de estructuras.

Tema 12.-

Aspectos constructivos de la edificación industrial. Introducción a la normativa de aplicación.

Tema 13.-

Algoritmos y programación (generalidades). Operaciones con vectores y matrices. Aspectos computacionales Método Directo de la Rigidez. Implementación.

Tema 14.-

Acercamiento al uso software libre y comercial para el cálculo de estructuras .

Metodología:

- 1.- Clases Teóricas. Clases expositivas en las que se explican los contenidos de la materia.
- 2.- Clases Prácticas.
- 2.1.- Clases Prácticas de Aula. Resolución de problemas propuestos. Se trabajará el análisis y puesta en común de conclusiones.
- 2.2.-Clases Prácticas de Laboratorio. Estudio de un código para el cálculo de estructuras en lenguaje de programación. Introducción al uso de software comercial o freeware para el análisis estructural.

HORAS TOTALES = 150

HORAS PRESENCIALES = 60

Asistencia a Clases Teóricas = 30

Asistencia a Clases Prácticas de Aula = 15

Asistencia a Clases Prácticas Laboratorio = 15

En sesiones presenciales de acuerdo al horario establecido:

Clases Teóricas: 15 sesiones de 2 horas (1 por semana) (1 Grupo)

Clases Prácticas Aula: entre 7 y 8 sesiones de 2 horas (1 cada 2 semanas) (2 Grupos)

En estas Clases Prácticas se realizarán problemas relacionados con los contenidos teóricos impartidos.

Clases Prácticas Lab: entre 7 y 8 sesiones de 2 horas (1 cada 2 semanas) (4 Grupos)

Las clases prácticas permitirán al alumno la orientación y aplicación de los conocimientos adquiridos, con la formulación e implementación de un código matricial para el análisis de estructuras de barras. Esta tarea contribuirá a consolidar la adquisición de contenidos y visualizar la aplicación práctica de la metodología utilizada.

HORAS NO PRESENCIALES = 90

Trabajo y estudio personal del Alumno = 75 horas

Preparación Trabajos y Memorias Prácticas = 15 horas

Evaluacion:

Criterios de evaluación

Se define el examen como:

Examen = Prueba escrita (Problemas) + Prueba Práctica de Laboratorio.

Para aprobar el examen es necesario obtener simultáneamente una nota de 5 sobre 10 en la Prueba escrita (Problemas) y de 5 sobre 10 en la Prueba Práctica de Laboratorio como mínimo.

Prueba escrita (Problemas):

Esta prueba escrita consta de resolución de problemas. Es necesario obtener una nota de 5 sobre 10 en esta Prueba escrita (Problemas) como mínimo para superar la asignatura.

Prueba Práctica de Laboratorio:

Se plantean dos métodos para aprobar esta prueba:

Método 1. Asistencia y elaboración de los Informes de Laboratorio

Las Prácticas de Laboratorio emplearán software de cálculo de estructuras para resolver las estructuras propuestas con programas matriciales o FEM.

El contenido mínimo de los Informes de Laboratorio tendrá los siguientes apartados:

- 1. Título de la práctica.
- 2. Entrada de datos (35%).
- 3. Cálculos (20%)
- 4. Resultados del cálculo (40%).
- 5. Conclusiones (5%)

En cada práctica se proponen uno o varios problemas. Al final de cada práctica se entregarán los Informes de Laboratorio que consistirán en un fichero pdf o de cálculo, según el programa que se indique, de solución de los problemas propuestos y que contenga todos los apartados anteriores.

Los Informes de Laboratorio se valorarán teniendo en cuenta la asistencia a todas las prácticas con el 25% de esta nota y el restante 75% a la presentación de los Informes de Laboratorio con los contenidos descritos. No se valorarán informes de alumnos que no asistan a esa Práctica.

Es necesario obtener una nota de 5 sobre 10 como mínimo en los Informes de prácticas de Laboratorio para poder aprobar la Prueba Práctica de Laboratorio.

Método 2. Prueba Práctica de Laboratorio en convocatoria oficial:

La Prueba Práctica de Laboratorio consiste en la realización de un cálculo de una estructura con el programa que se especifique. Se realizará en el día que se indique a todos los alumnos que deban realizar esta parte práctica.

Se valorarán los resultados del cálculo propuesto según el baremo que se defina en esa Prueba práctica.

Es necesario obtener una nota de 5 sobre 10 como mínimo en la Prueba práctica de Laboratorio en convocatoria oficial para poder aprobar la Prueba práctica de Laboratorio.

La Prueba Práctica de Laboratorio en convocatoria oficial la tendrán que realizar todos los alumnos que no hayan superado la Prueba práctica de Laboratorio durante el curso (método 1) o en los dos cursos anteriores.

El examen definido anteriormente se aplicará según el siguiente criterio:

Examen convocatoria ordinaria:

Examen = Prueba escrita (Problemas) + Prueba práctica de Laboratorio realizada y aprobada con el Método 1 o con el Método 2.

Examen convocatoria extraordinaria:

Examen = Prueba escrita (Problemas) + Prueba práctica de Laboratorio realizada con el Método 10 con el Método 2.

Examen convocatoria especial:

Examen = Prueba escrita (Problemas) + Prueba práctica de Laboratorio realizada con el Método 10 el Método 2.

Para todas las convocatorias: No se guardan aprobados parciales de una convocatoria a otra a excepción de la Prueba práctica de Laboratorio aprobada durante el curso Método 1 o con el Método 2) o en los dos cursos anteriores.

Sistemas de evaluación

Para determinar la calificación final del Alumno, los coeficientes de ponderación asociados a cada actividad de evaluación se basan en Valoración del Trabajo de Laboratorio (AE3), la Valoración de las Memorias de las actividades de laboratorio (AE4) y el Examen final (AE5).

Criterios de calificación

La ponderación del sistema de evaluación se establece a continuación:

AE3: 5% AE4: 15% AE5: 80%

Convocatoria ordinaria:

Nota final = AE3(5%) + AE4(15%) + AE5(80%)

Para aplicar esta fórmula es necesario obtener una nota de 5 sobre 10 en la Prueba escrita (Problemas) y una nota de 5 sobre 10 en la Prueba Práctica de Laboratorio, como mínimo, realizada mediante la Asistencia y elaboración de los Informes de las prácticas de Laboratorio (Método 1) o en la Prueba práctica de Laboratorio en convocatoria oficial (Método 2) para poder aprobar la asignatura.

Si no se aprueba la Prueba práctica de Laboratorio o la Prueba escrita (Problemas) la nota final del examen no puede superar el Suspenso, 4 y será:

Nota final = (0.94) x [AE5- Prueba escrita –Problemas-(100%)] $^{(0.62)}$

No se guardan aprobados parciales de una convocatoria a otra a excepción de la Prueba práctica de Laboratorio aprobada durante el curso (Método 1 o Método 2) o en dos cursos anteriores.

Convocatoria extraordinaria:

Nota final = AE3(5%) + AE4(15%) + AE5(80%)

Para aplicar esta fórmula es necesario obtener una nota de 5 sobre 10 en la Prueba escrita (Problemas) y una nota de 5 sobre 10 en la Prueba Práctica de Laboratorio, como mínimo, realizada mediante la Asistencia y elaboración de los Informes de las prácticas de Laboratorio (Método 1) o en la Prueba práctica de Laboratorio en convocatoria oficial (Método 2) para poder aprobar la asignatura.

Si no se aprueba la Prueba práctica de Laboratorio o la Prueba escrita (Problemas) la nota final del examen no puede superar el Suspenso, 4 y será:

Nota final = (0.94) x [AE5- Prueba escrita –Problemas-(100%)] $^{(0.62)}$

No se guardan aprobados parciales de una convocatoria a otra a excepción de la Prueba práctica de Laboratorio aprobada durante el curso (Método 1 o Método 2) o en dos cursos anteriores.

Convocatoria especial:

Nota final = AE3(5%) + AE4(15%) + AE5(80%)

Para aplicar esta fórmula es necesario obtener una nota de 5 sobre 10 en la Prueba escrita (Problemas) y una nota de 5 sobre 10 en la Prueba Práctica de Laboratorio, como mínimo, realizada mediante la Asistencia y elaboración de los Informes de las prácticas de Laboratorio (Método 1) o en la Prueba práctica de Laboratorio en convocatoria oficial (Método 2) para poder aprobar la asignatura.

Si no se aprueba la Prueba práctica de Laboratorio o la Prueba escrita (Problemas) la nota final del examen no puede superar el Suspenso, 4 y será:

Nota final = (0.94) x [AE5- Prueba escrita –Problemas-(100%)] $^{(0.62)}$

No se guardan aprobados parciales de una convocatoria a otra a excepción de la Prueba práctica de Laboratorio aprobada durante el curso (Método 1 o Método 2) o en dos cursos anteriores

Plan de Aprendizaje (Plan de trabajo de cada estudiante)

Tareas y actividades que realizará según distintos contextos profesionales (científico, profesional, institucional, social)

AF1.- Sesiones Presenciales Teóricas. Se presentarán y debatirán los contenidos de la Asignatura de acuerdo con el temario.

AF2.- Sesiones Presenciales. Problemas en Aula. Resolución y análisis de ejemplos propuestos.

AF3.- Sesiones Presenciales. Prácticas de Laboratorio. Aplicación a la implementación de un modelo informático para la obtención de la respuesta estática de estructuras de barras. Uso de software comercial o freeware para el análisis estructural.

AF4.- Sesiones Presenciales. Tutorias (optativo).

AF9.- Actividad No Presencial. Redacción de Informes Practicas de Laboratorio.

AF11.- Actividad No Presencial. Trabajo Autónomo.

Temporalización semanal de tareas y actividades (distribución de tiempos en distintas actividades y en presencialidad - no presencialidad)

Teniendo en cuenta el número de Grupos de Teoría (1), Problemas (2) y Prácticas (4), la carga lectiva de cada actividad y la duración de las clases (2h), la distribución temporal de tareas y actividades se realiza agrupando en 2 semanas (semanas impar/par):

Semanas 1-2: Tema 1 - Tema 2 - Tema 12 (prácticas laboratorio)

Actividades Teoría (h): 4

Actividades Prácticas de Aula (h): 2

```
Actividades no presenciales y trabajo autónomo (h): 12
Semanas 3-4: Tema 3 - Tema 4 - Tema 12 (prácticas laboratorio)
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 5-6: Tema 4 - Tema 12 (prácticas laboratorio)
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 7-8: Tema 5 - Tema 12 (prácticas laboratorio)
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 9-10: Tema 6 - Tema 7 - Tema 8 - Tema 12 (prácticas laboratorio)
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 11-12: Tema 9 - Tema 10 - Tema 12 (prácticas laboratorio)
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 13-14: Tema 11 - Tema 12 (prácticas laboratorio) - Tema 13 (prácticas laboratorio) -
Tema 14
 Actividades Teoría (h): 4
 Actividades Prácticas de Aula (h): 2
 Actividades Prácticas de Laboratorio (h): 2
 Actividades no presenciales y trabajo autónomo (h): 12
Semanas 15: Tema 11 - Tema 13 (prácticas laboratorio) - Tema 14
 Actividades Teoría (h): 2
 Actividades Prácticas de Aula (h): 1
 Actividades Prácticas de Laboratorio (h): 1
 Actividades no presenciales y trabajo autónomo (h): 6
NOTA: se entiende esta semana 15 de ajuste y dependerá del calendario académico oficial
aprobado.
Resumen de horas totales:
 Actividades Teoría (h): 30
 Actividades Prácticas de Aula (h): 30
```

Actividades Prácticas de Laboratorio (h): 2

Actividades Prácticas de Laboratorio (h): 30

Recursos que tendrá que utilizar adecuadamente en cada uno de los contextos profesionales.

Las clases presenciales (Teoría y Problemas) se realizarán con la ayuda de los medios audiovisuales (pizarra y proyectores) de los que dispone la EIIC.

También, se dispone de licencia multi-usuario del software necesario para las prácticas de laboratorio. Dicho software se encuentra instalado y esta disponible en las Salas de Informatica de la EIIC.

Resultados de aprendizaje que tendrá que alcanzar al finalizar las distintas tareas.

De acuerdo al Verifica de la Titulación (Materia: Mecánica de Medios Continuos y Estructuras):

- 1. Comprender las hipótesis básicas de comportamiento estructural. Comprender la relación entre la estructura real y el modelo de cálculo.
- 2. Comprender y aplicar las ecuaciones de la elasticidad lineal a la resolución de problemas vinculados a la obtención de la respuesta en tensiones/ deformaciones/ desplazamientos de piezas mecánicas o estructuras continuas sometidas a carga estática.
- 3. Desarrollar la capacidad para la creación de modelos de Elementos Finitos que permitan calcular la respuesta de piezas mecánicas, estructuras continuas o estructuras de barras sometidas a carga estática.
- 4. Conocer, comprender y aplicar la normativa vigente en todos aquellos aspectos relacionados con el diseño y cálculo de una estructura industrial.
- 5. Adquirir destreza para aplicar los conceptos aprendidos en el diseño estructural.

Plan Tutorial

Atención presencial individualizada (incluir las acciones dirigidas a estudiantes en 5ª, 6ª y 7ª convocatoria)

En el despacho de los profesores, en horario de tutoria.

La petición de realización de las tutorías se realizará a través de la herramienta Reuniones Tutoría Presencial del Campus Virtual de la asignatura, Open ULPGC o través de cita previa mediante el correo institucional En el Campus Virtual e habilitará un Sistema de publicación de días y horas de atención a estudiantes como Tutoría presencial (Artículo 42 del R. de Planificación),

publicandose en el tablón existente en la sede departamental del Departamento de Ingeniería Civil o en la Web del Departamento.

ESTUDIANTES EN 5ª,6ª y 7ª CONVOCATORIA

En el REGLAMENTO DE EVALUACIÓN DE LOS RESULTADOS DE APRENDIZAJE Y DE LAS COMPETENCIAS ADQUIRIDAS POR EL ALUMNADO EN LOS TÍTULOS OFICIALES, TÍTULOS PROPIOS Y DE FORMACIÓN CONTINUA DE ULPGC, en su Artículo 16.- Modelo de evaluación general, Apartado 6, indica que "Los alumnos que se

encuentren en quinta, sexta o séptima convocatoria pueden solicitar, por escrito, ser excluidos de la evaluación continua a la CAD del centro al inicio del curso académico, en cuyo caso se

integrarán, automáticamente, en el acta de alumnos evaluados por un tribunal, según lo establecido en el artículo 12 punto 3 de este Reglamento. El Centro informará al alumno, si se da esta

situación, de las actividades planificadas dentro de su Plan de Acción Tutorial para ayudarle a

superar estas materias"

Para los estudiantes en 5^a, 6^a y 7^a convocatoria que no pidan ser excluidos de la evaluación

continua como indica el articulo anterior, se propone un Plan de Tutela específica. Se trata de un plan personalizado, confeccionado a la medida de cada estudiante por el Tutor. El Plan de tutela puede establecer alguna combinación de:

* Programa de Reuniones de Tutoría (opcional): Se trataría de tutorías regladas, en fechas previamente definidas, de asistencia obligatoria en las que el estudiante expone sus progresos y consulta sus dudas. La tutoría no es una ampliación de clases, se trata de dar una oportunidad al estudiante de mostrar su dedicación estudio y los frutos de su comprensión de las asignatura. El número total y la periodicidad de esta reuniones (o su mera existencia) queda a criterio del Profesor coordinador, tras consideración y acuerdo con cada estudiante en cuestión. Las reuniones pueden ser presenciales o virtuales, a través de Open ULPGC.

*Actividades de aprendizaje complementarias (opcional): Puede ser adecuado programar actividades adiciones o complementarias a las previstas en el Proyecto docente para la generalidad de los estudiantes. Siempre actividades que ayuden al estudio o permitan el seguimiento y control del progreso por parte del propio estudiante o su tutor, no actividades de evaluación, que entrarían en el apartado siguiente. Por ejemplo, ejercicios complementarios para consolidar conocimientos. Estas actividades podría realizarse formando grupos en alguna Red Social implementada con algún software específico de redes sociales que permita interacciones entre los diferentes estudiantes y el tutor.

También pueden ser controles de seguimiento para monitorizar si los conocimientos están bien asentados o no, y en su caso dónde hay que reforzar el estudio, pero no actividades enfocadas a una evaluación formal. La programación o realización de actividades adicionales queda a juicio del Tutor, según las necesidades de cada estudiante.

*Actividades de evaluación: Los Resultados de Aprendizaje alcanzados por los estudiantes tutorizados deben ser los mismos especificados en el Proyecto docente para todos los estudiantes.

Atención presencial a grupos de trabajo

No procede. No esta prevista la realización de Trabajos en Grupo.

Attention to work groups

In the classroom practical classes

Atención telefónica

En el despacho de los profesores, en horario de tutoría.

Telephone support

In the office of teachers in tutoring schedule.

Atención virtual (on-line)

La realización de las tutorías se realizará a través de la herramienta Open ULPGC. Virtual attention (online)

The realization of the tutorials will be done through the Open ULPGC tool

Datos identificativos del profesorado que la imparte.

Datos identificativos del profesorado que la imparte

Dr./Dra. José Carlos Nelson Santana

(COORDINADOR)

Departamento: 263 - INGENIERÍA CIVIL

Ámbito: 605 - Mecánica De Los Med. Con. Y Teo.De Estr. Área: 605 - Mecánica De Los Med. Con. Y Teo.De Estr.

Despacho: INGENIERÍA CIVIL

Teléfono: 928451922 Correo Electrónico: josecarlos.nelson@ulpgc.es

Bibliografía

[1 Básico] Cálculo matricial de estructuras /

E. Alarcón Álvarez, R. Álvarez Cabal, Mª S. Gómez Lera.

Reverté,, Barcelona: (1986)

8429148019

[2 Básico] Teoría de estructuras /

José Domínguez Abascal.

ETSII, Universidad Politécnica,, Las Palmas de Gran Canaria: (1981)

[3 Básico] Cálculo matricial de estructuras /

Ramón A. Abascal García.

Escuela Superior de Ingenieros Industriales,, Sevilla: (2000)

8488783132

[4 Recomendado] Teoría de las estructuras /

por S. P. Timoshenko y D. H. Young; traducido por C. Calvo Rodríguez y J. L. Nieto Martinez.

Urmo,, Bilbao : (1975)

8431402415