

GUÍA DOCENTE CURSO: 2015/16

44529 - DISEÑO Y CÁLCULO DE ESTRUCTURAS

CENTRO: 105 - Escuela de Ingenierías Industriales y Civiles

TITULACIÓN: 4042 - Grado en Ingeniería Mecánica

ASIGNATURA: 44529 - DISEÑO Y CÁLCULO DE ESTRUCTURAS

CÓDIGO UNESCO: 3305.32 TIPO: Obligatoria CURSO: 3 SEMESTRE: 2º semestre

CRÉDITOS ECTS: 6 Especificar créditos de cada lengua: ESPAÑOL: 6 INGLÉS:

SUMMARY

REQUISITOS PREVIOS

Requisitos previos (Recomendación)

- 1.- Cálculo I.
- 2.- Cálculo II.
- 3.- Física I
- 4.- Resistencia de Materiales.

Plan de Enseñanza (Plan de trabajo del profesorado)

Contribución de la asignatura al perfil profesional:

El conocimiento de las bases teóricas sobre el comportamiento estructural es determinante en el análisis y diseño de edificaciones industriales y dispositivos mecánicos en general, ámbitos en los que desarrollan su actividad los profesionales con esta titulación.

Competencias que tiene asignadas:

COMPETENCIAS BÁSICAS Y GENERALES

- G4 TRABAJO EN EQUIPO. Ser capaz de trabajar como miembro de un entorno y equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
- G3 COMUNICACIÓN EFICAZ ORAL Y ESCRITA. Comunicarse de forma oral y escrita con otras personas sobre los resultados del aprendizaje, de la elaboración del pensamiento y de la toma de decisiones; participar en debates sobre temas de la propia especialidad.
- G5 USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN. Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

- G6 APRENDIZAJE AUTÓNOMO. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar este conocimiento.
- T3 Conocimiento en materias básicas de la rama de ingeniería y arquitectura y materias tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- T4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas.
- T6 Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.

COMPETENCIAS TRANSVERSALES

- N1 Comunicarse de forma adecuada y respetuosa con diferentes audiencias (clientes, colaboradores, promotores, agentes sociales, etc.), utilizando los soportes y vías de comunicación más apropiados (especialmente las nuevas tecnologías de la información
- y la comunicación) de modo que pueda llegar a comprender los intereses, necesidades y preocupaciones de las personas y organizaciones, así como expresar claramente el sentido de la misión que tiene encomendada y la forma en que puede contribuir, con sus competencias y conocimientos profesionales, a la satisfacción de esos intereses, necesidades y preocupaciones.
- N2 Cooperar con otras personas y organizaciones en la realización eficaz de funciones y tareas propias de su perfil profesional, desarrollando una actitud reflexiva sobre sus propias competencias y conocimientos profesionales y una actitud comprensiva y empática hacia las competencias y conocimientos de otros profesionales.

COMPETENCIAS ESPECÍFICAS

MTEM5 - Conocimientos y capacidad para el cálculo y diseño de estructuras y construcciones industriales.

Objetivos:

- 1.- Comprender las hipótesis básicas de comportamiento estructural. Comprender la relación entre la estructura real y el modelo de cálculo.
- 2.- Conocer, entender y aplicar procedimientos y metodologías para obtener la respuesta de estructuras de barras sometidas a carga estática.
- 3.- Comprender el comportamiento de las configuraciones estructurales más habituales en la ingeniería industrial.
- 4.- Adquirir destreza para aplicar y orientar los conceptos aprendidos en el diseño de la estructura más adecuada en cada caso.
- 5.- La aplicación de las competencias Básicas, Generales y Transversales relacionadas con el campo de estudio de la materia se tendrán en cuenta a través de trabajos y memorias que los alumnos presentan a lo largo del curso. Sin embargo no son objeto de evaluación específica.

Contenidos:

Los Contenidos que figuran en la Memoria Verifica del Título de Grado en Ingeniería Mecánica relacionados con esta asignatura en el contexto de su materia son:

- El Método de los Elementos Finitos aplicado a la resolución de problemas que impliquen a elementos mecánicos o estructuras industriales.
- Normativa de aplicación para el diseño y análisis estructural.
- Introducción al Diseño Estructural.

Se presenta a continuación el desarrollo de los anteriores puntos a través de los siguientes temas:

Tema 1.-Introducción a las estructuras.Conceptos previos.

Tema 2.-Conceptos básicos de cálculo matricial.

- 2.1 Métodos matriciales.
- 2.2 Discretización de elementos y nudos.
- 2.3 Grados de libertad y coordenadas.
- 2.4 Métodos de compatibilidad y de equilibrio
- 2.5 Concepto de matriz de rigidez y de flexibilidad.

Tema 3.- Método directo de la rigidez: El Elemento

- 3.1 Sistemas de Coordenadas
- 3.2 Matrices de rigidez elementales
- 3.3 Transformación de coordenadas.

Tema 4.- Metodo directo de la rigidez: La estructura

- 4.1 El Método directo de la rigidez
- 4.2 Imposición de las condiciones de contorno.
- 4.3 Propiedades de la matriz de rigidez
- 4.4 Cálculo de las reacciones y de los esfuerzos en los elementos

Tema 5.- Acciones no nodales

- 5.1 Cargas aplicadas en barras
- 5.2 Movimientos de apoyos.
- 5.3 Cargas térmicas.

Tema 6.-Técnicas matriciales complementarias

Tema 7.- Aspectos constructivos de la Edificación Industrial

Tema 8.- Normativa aplicable

Clases prácticas de aula:

Resolución de distintos problemas (15)

Prácticas de Laboratorio

Introducción al uso del programa Cype.

Cálculo de una nave industrial (7,5 horas)

Metodología:

- 1.- Clases Teóricas. Clases impartidas por el profesor de la asignatura en las que se explican los contenidos de la materia.
- 2.- Clases Prácticas.
- 2.1.- Clases Prácticas de Aula. Resolución de problemas teóricos propuestos. Se trabajará el análisis y puesta en común de conclusiones.
- 2.2.-Clases Prácticas de Laboratorio. Introducción al uso de programas comerciales para el cálculo y diseño de estructuras.

HORAS TOTALES = 150

HORAS PRESENCIALES = 60

Asistencia a Clases Teóricas = 30

Asistencia a Clases Prácticas de Aula = 15

Asistencia a Clases Prácticas Laboratorio = 15

En sesiones presenciales de acuerdo al horario establecido:

Clases Teóricas: 15 sesiones de 2 horas (1 por semana).

Clases Prácticas Aula: entre 7 y 8 sesiones de 2 horas

(1 cada 2 semanas)

En estas Clases Prácticas se realizarán problemas relacionados con los contenidos teóricos impartidos.

Clases Prácticas Lab: entre 7 y 8 sesiones de 2 horas

(1 cada 2 semanas)

Clases Prácticas de introducción al uso de Software Comercial de cálculo estructural.

HORAS NO PRESENCIALES = 90

Trabajo y estudio personal del Alumno = 75 horas

Preparación Trabajos y Memorias Prácticas = 15 horas

Evaluacion:

Criterios de evaluación

Para evaluar la asignatura se realizará:

- Exámen escrito de problemas
- Asistencia a todas las prácticas de laboratorio
- Entrega de trabajo y/o memoria de las prácticas de laboratorio

Aprobar el examen con un 5/10

Aprobar la memoria y/o prácticas de laboratorio con un 5/10

Sistemas de evaluación

En todas las convocatorias se realizará un examen de problemas, siendo requisito indispensable para poder aprobar la asignatura haber realizado las prácticas de laboratorio y entrega de trabajos y/o memoria de las mismas.

Las prácticas de laboratorios se guardarán dos cursos.

Criterios de calificación

Para determinar la calificación final del Alumno, los coefiecientes de ponderación asociados a cada actividad de evaluación se establecen a continuación:

AE3. Trabajo de Laboratorio = 10%

AE4. Memorias de Laboratorio = 10%

AE5. Exámenes = 80%

Plan de Aprendizaje (Plan de trabajo de cada estudiante)

Tareas y actividades que realizará según distintos contextos profesionales (científico, profesional, institucional, social)

AF1.- Sesiones Presenciales Teóricas. Se presentarán y debatirán los contenidos de la Asignatura de acuerdo con el temario.

AF2.- Sesiones Presenciales. Trabajos prácticos y Problemas en Aula. Resolución y análisis de ejemplos propuestos.

AF3.- Sesiones Presenciales. Prácticas de Laboratorio. Introducción al uso de Software para el cálculo de estructuras.

AF4.- Sesiones Presenciales. Tutorias (optativo)

AF9.- Actividad No Presencial. Redacción de Informes Practicas de Laboratorio.

AF11.- Actividad No Presencial. Trabajo Autónomo.

Temporalización semanal de tareas y actividades (distribución de tiempos en distintas actividades y en presencialidad - no presencialidad)

Semana 1: Tema 1.-Introducción a las estructuras.Conceptos previos. /Tema 2.-Conceptos básicos de cálculo matricial. (1)

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h): 1.5

Actividades Prácticas de Laboratorio (h):0.5

Actividades y trabajo no presencial (h): 1

Semana 2: Tema 3.- Método directo de la rigidez: El Elemento

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h): 1.5

Actividades Prácticas de Laboratorio (h): 0.5

Actividades y trabajo no presencial (h): 2

Semana 3: Tema 3.- Método directo de la rigidez: El Elemento

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h): 1.5

Actividades Prácticas de Laboratorio (h): 0.5

Actividades y trabajo no presencial (h): 2

Semana 4: Tema 3.- Método directo de la rigidez: El Elemento

Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 5: Tema 4 Metodo directo de la rigidez: La estructura
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 6: Tema 4 Metodo directo de la rigidez: La estructura
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 7: Tema 4 Metodo directo de la rigidez: La estructura
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 8: Tema 4 Metodo directo de la rigidez: La estructura
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h):0.5
Actividades y trabajo no presencial (h): 5
Semana 9: Tema 5 Acciones no nodales
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 10: Tema 6Técnicas matriciales complementarias
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 11: Tema 7 Aspectos constructivos de la Edificación Industrial
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5
Semana 12: Tema 7 Aspectos constructivos de la Edificación Industrial
Actividades Teoría (h): 2
Actividades Prácticas de Aula (h): 1.5
Actividades Prácticas de Laboratorio (h): 0.5
Actividades y trabajo no presencial (h): 5

Semana 13: Tema 7.- Aspectos constructivos de la Edificación Industrial

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h):1.5

Actividades Prácticas de Laboratorio (h): 0.5 Actividades y trabajo no presencial (h): 5

Semana 14: Tema 7.- Aspectos constructivos de la Edificación Industrial

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h): 1.5

Actividades Prácticas de Laboratorio (h): 0.5 Actividades y trabajo no presencial (h): 5

Semana 15: Tema 8.- Normativa aplicable

Actividades Teoría (h): 2

Actividades Prácticas de Aula (h): 2

Actividades Prácticas de Laboratorio (h): 1

Actividades y trabajo no presencial (h): 5

Actividades y trabajo no presencial (h):90

Resumen de horas totales:

Actividades Teoría (h): 30

Actividades Prácticas de Aula (h): 23.5

Actividades Prácticas de Laboratorio (h): 7.5

Actividades y trabajo no presencial (h): 90

Recursos que tendrá que utilizar adecuadamente en cada uno de los contextos profesionales.

Las clases presenciales (Teoría y Problemas) se realizarán con la ayuda de los medios audiovisuales (pizarra y proyectores) de los que dispone la EIIC.

También, se dispone de licencia multi-usuario para uso de software comercial para el cálculo de estructuras. Dicho software se encuentra instalado y esta disponible en las Salas de Informatica de la EIIC.

Resultados de aprendizaje que tendrá que alcanzar al finalizar las distintas tareas.

- 1. Comprender las hipótesis básicas de comportamiento estructural. Comprender la relación entre la estructura real y el modelo de cálculo.
- 2. Comprender y aplicar las ecuaciones de la elasticidad lineal a la resolución de problemas vinculados a la obtención de la respuesta en tensiones/ deformaciones/ desplazamientos de piezas mecánicas o estructuras continuas sometidas a carga estática.
- 3. Desarrollar la capacidad para la creación de modelos de Elementos Finitos que permitan calcular la respuesta de piezas mecánicas, estructuras continuas o estructuras de barras sometidas a carga estática.
- 4. Conocer, comprender y aplicar la normativa vigente en todos aquellos aspectos relacionados con el diseño y cálculo de una estructura industrial.
- 5. Adquirir destreza para aplicar los conceptos aprendidos en el diseño estructural.

Plan Tutorial

Atención presencial individualizada (incluir las acciones dirigidas a estudiantes en 5ª, 6ª y 7ª convocatoria)

Cada semana, durante la impartición del curso, se establecerán un número determinado de horas de tutorías presenciales individuales a las que el Alumno puede optar para consultar dudas o cuestiones relacionadas con los contenidos de la Asignatura.

La realización de las tutorías se realizará a través de la herramienta Reuniones Tutoría Presencial del Campus Virtual de la asignatura. En ella se habilitará un Sistema de publicación de días y horas de atención a estudiantes como Tutoría presencial (Artículo 42 del R. de Planificación Académica). Incluye también el mecanismo de reserva de hora por parte de los estudiantes.

Atención presencial a grupos de trabajo

No procede. No esta prevista la realización de Trabajos en Grupo.

Atención telefónica

En el despacho de los profesores, en horario de tutoría.

Atención virtual (on-line)

La realización de las tutorías se realizará a través de la herramienta Reuniones Tutoría Presencial del Campus Virtual de la asignatura. En ella se habilitará un Sistema de publicación de días y horas de atención a estudiantes como Tutoría presencial (Artículo 42 del R. de Planificación Académica). Incluye también el mecanismo de reserva de hora por parte de los estudiantes.

Datos identificativos del profesorado que la imparte.

Datos identificativos del profesorado que la imparte

Dr./Dra. Juan José Aznárez González

(COORDINADOR)

Departamento: 263 - INGENIERÍA CIVIL

Ámbito: 605 - Mecánica De Los Med. Con. Y Teo.De Estr. Área: 605 - Mecánica De Los Med. Con. Y Teo.De Estr.

Despacho: INGENIERÍA CIVIL

Teléfono: 928451914 Correo Electrónico: juanjose.aznarez@ulpgc.es

Dr./Dra. Guillermo Manuel Álamo Meneses

Departamento: 263 - INGENIERÍA CIVIL

Ámbito: 605 - Mecánica De Los Med. Con. Y Teo.De Estr. Área: 605 - Mecánica De Los Med. Con. Y Teo.De Estr.

Despacho: INGENIERÍA CIVIL

Teléfono: Correo Electrónico: quillermo.alamo@ulpqc.es

Dr./Dra. Jacob David Rodríguez Bordón

Departamento: 263 - INGENIERÍA CIVIL

Ámbito: 605 - Mecánica De Los Med. Con. Y Teo.De Estr. Área: 605 - Mecánica De Los Med. Con. Y Teo.De Estr.

Despacho: INGENIERÍA CIVIL

Teléfono: Correo Electrónico: jacobdavid.rodriguezbordon@ulpgc.es

Bibliografía

[1 Básico] Cálculo matricial de estructuras /

E. Alarcón Álvarez, R. Álvarez Cabal, Mª S. Gómez Lera.

Reverté,, Barcelona : (1986)

8429148019

[2 Básico] Teoría de estructuras /

José Domínguez Abascal.

ETSII, Universidad Politécnica,, Las Palmas de Gran Canaria: (1981)

[3 Básico] Cálculo matricial de estructuras /

Ramón A. Abascal García.

Escuela Superior de Ingenieros Industriales,, Sevilla: (2000)

8488783132

[4 Recomendado] Cálculo de estructuras por el método de elementos finitos: análisis estático lineal /

Eugenio Oñate Ibáñez de Navarra.

Centro Internacional de Métodos Numéricos en Ingeniería,, Barcelona: (1995) - (2ª ed.)

8487867006

[5 Recomendado] Teoría de las estructuras /

por S. P. Timoshenko y D. H. Young.

Acme Agency,, Buenos Aires: (1951)