GUÍA DOCENTE

Horas de trabajo del alumno: 135

15669 - FUNDAMENTOS FÍSICOS DE LA INGENIERÍA I

CURSO: 2011/12

ASIGNATURA: 15669 - FUNDAMENTOS FÍSICOS DE LA INGENIERÍA I

CENTRO: Escuela de Ingenierías Industriales y Civiles

TITULACIÓN: Ingeniero Químico

DEPARTAMENTO: FÍSICA

ÁREA: Física Aplicada

PLAN: 10 - Año 200 ESPECIALIDAD:

CURSO: Primer curso IMPARTIDA: Primer semestre TIPO: Troncal

CRÉDITOS: 6 TEÓRICOS: 4,5 PRÁCTICOS: 1,5

Información ECTS

Créditos ECTS: 4.5

Horas presenciales: 60

- Horas teóricas (HT): 39

- Horas prácticas (HP): 15

- Horas de clases tutorizadas (HCT): 0

- Horas de evaluación: 6

- otras:

Horas no presenciales: 75

- trabajos tutorizados (HTT): 7.5

- actividad independiente (HAI): 67.5

Idioma en que se imparte: español

Descriptores B.O.E.

Electricidad. Electromagnetismo. Óptica. Mecánica. Dinámica de fluidos.

Temario

Tema 1.- Análisis vectorial.

1.- Campos escalares y vectoriales. 2.- Coordenadas cartesianas, cilíndricas y esféricas. 3.- Gradiente de un campo escalar.

Tema 2.- Fuerza y campo eléctrico.

- 1.- Carga y Ley de Coulomb. 2.- Campo eléctrico de distribuciones continuas y discretas de carga.
- 3.- Teorema de Gauss. Aplicaciones. 4.- Conductores en equilibrio electrostático.

Tema 3.- Potencial eléctrico.

1.- Potencial eléctrico. 2.- Cálculo del campo y potencial eléctrico. 3.- Potencial en un conductor. Superficies equipotenciales. Conductores aislados y no aislados. 4.- Energía potencial electrostática.

Tema 4.- Condensadores.

1.- Condensadores. Cálculo de capacidades. 2.- Asociación de condensadores. 3.- Energía de un

Página 1 de 4

condensador cargado. 4.- Dipolo eléctrico y dieléctricos.

Tema 5.- Conducción.

1.- Corriente eléctrica. Intensidad y densidad de corriente. 2.- Ley de Ohm. Conductores. Resistencia y resistividad. 3.- Semiconductores intrínsecos y extrínsecos. 4.- El diodo de unión pn. 5.- El transistor npn.

Tema 6.- Circuitos de corriente continua.

1.- Elementos de un circuito. 2.- Asociación de resistencias. 3.- Reglas de Kirchhoff. 4.- Método de las corrientes circulantes. 5.- Circuito RC. 6.- Circuitos con resistencias y condensadores. 7.- Potencia eléctrica.

Tema 7.- Campo magnético.

1.- El campo magnético y Ley de Biot y Savart. 2.- Campo magnético debido a una corriente rectilínea. 3.- Campo magnético debido a una corriente circular. 4.- Campo magnético debido a un solenoide.

Tema 8.- Fuerza magnética.

1.- Fuerza sobre cargas puntuales. 2.- Aplicaciones: selector de velocidades, espectrómetro de masas, medidor de flujo.- 2.- Fuerza sobre una corriente eléctrica. 3.- Fuerza entre dos corrientes rectilíneas, paralelas e indefinidas.

Tema 9.- Magnetismo en la materia. (*)

- 1.- Magnetización e intensidad del campo magnético. Susceptibilidad y permabilidad magnética
- 2.- Ferromagnetismo, paramagnetismo y diamagnetismo. 3.- Resolución de circuitos magnéticos.

Tema 10.- Inducción electromagnética.

1.- Flujo magnético. 2.- Ley de inducción de Faraday. Ley de Lenz. Ejemplos. 3.- Fuerza electromotriz inducida en un conductor en movimiento. Ejemplos. 4.- Coeficiente de autoinducción y f.e.m. inducida. 5.- Circuito RL. 6.- Energía magnética.

Tema 11.- Circuitos de corriente alterna. (*)

1.- Elementos de un circuito. 2.- Método de las impedancias complejas para la resolución de circuitos de corriente alterna. 3.- Potencia instantánea y potencia media.

Requisitos Previos

Conocimientos previos: los que se exigen en la PAU

Objetivos

Objetivos cognitivos:

Adquirir y familiarizarse con los conocimientos teóricos y prácticos de los contenidos especificados en los descriptores. Como resumen de los contenidos que el alumno debe asimilar, indicamos los siguientes:

- Campo y potencial eléctrico.
- Campo y fuerza magnética.
- Inducción electromagnética.
- Resolución de circuitos eléctricos sencillos.

Objetivos instrumentales:

- Desarrollar destrezas y habilidades para resolver ejercicios de circuitos eléctricos
- Realizar montajes de circuitos en el laboratorio.

Objetivos actitudinales:

- Adquirir interés por la materia y por la aplicación práctica de los conocimientos adquiridos.
- Trabajar en equipo en el laboratorio.

Metodología

HORARIO DE TUTORÍAS DEL PROFESOR: miércoles y jueves de 10-13 horas Dpto. de Física (DESPACHO N° F116)

En el presente curso esta asignatura está en proceso de extinción debido al cambio de planes y no se imparten clases teóricas ni prácticas. Para la tutorización de los estudiantes matriculados se seguirá el calendario establecido por el centro

Criterios de Evaluación

El Centro establecerá las fechas de los exámenes de las convocatorias ordinarias y extraordinarias. Dicho examen constará de teoría y problemas.

Descripción de las Prácticas

Se proponen 6 prácticas de laboratorio para realizar en cuatro sesiones:

- P1.- Instrumentación: uso del osciloscopio, del generador de señal y del multímetro.
- P2-P3.- Análisis temporal de circuitos RC y RL, estudio de los regímenes transitorios.
- P4.- Curva caracteristica del diodo.
- P5.- Análisis temporal de un circuito RLC serie.
- P6.- Estudio de circuitos de c.a. Estudio frecuencial de un circuito RLC serie.

Bibliografía

[1 Básico] Electricidad y magnetismo /

Raymond A. Serway. McGraw-Hill,, México [etc.] : (1999) 9701025636

Organización Docente de la Asignatura

			Horas		_	
Contenidos	HT	HP	HCT	HTT	HAI	Competencias y Objetivos
Electrostática (temas 1 al 4)	12	3	0	3	20	Asimilar los conceptos de campo y potencial eléctrico.

Horas

Contenidos	НТ	HP	HCT	HTT	HAI	Competencias y Objetivos
Conducción (temas 5 y 6)	6	3	0	2	12.5	Adquirir habilidad en la resolución de circuitos de corriente continua con resistencias y condensadores. Desarrollar destreza en el montaje de circuitos en el Laboratorio.
Magnetismo (temas 7 al 9)	12	3	0	0	15	Asimilar los conceptos de campo y fuerza magnética.
Inducción electromagnética (temas 10 y 11)	9	6	0	2.5	20	Asimilar el concepto de inducción electromagnética y de energía magnética. Estudiar la inducción mediante ejemplos de aplicación. Desarrollar destreza en el montaje de circuitos de c.a. en el Laboratorio.