

GUÍA DOCENTE

14159 - DISEÑO DE SISTEMAS EN CHIP

CURSO: 2008/09

ASIGNATURA: 14159 - DISEÑO DE SISTEMAS EN CHIP

CENTRO: Escuela de Ingeniería de Telecomunicación y Electrónica

TITULACIÓN: Ingeniero en Electrónica

DEPARTAMENTO: INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA

ÁREA: Tecnología Electrónica

PLAN: 10 - Año 200ESPECIALIDAD:

CURSO: Quinto curso IMPARTIDA: Primer semestre TIPO: Optativa

CRÉDITOS: 4,5 TEÓRICOS: 3 PRÁCTICOS: 1,5

Información ECTS

Créditos ECTS: 3.6

Horas presenciales:

- Horas Teóricas (HT): 28.0- Horas Prácticas (HP): 14.0

- Horas Clases Tutorizadas (HCT): 3.0

- Horas de evaluación: 0.0

- Otras:0.0

Horas no presenciales:

-Trabajos Tutorizados (HTT): 20.5 -Actividad Independientes (HAI):24.5

Idioma en que se imparte: español

Horas de trabajo del alumno:90

Descriptores B.O.E.

Conceptos de sistemas en chip. Núcleos y módulos IP. Codiseño hardware-software. Intercambio de núcleo. Estándares. Sistemas reconfigurables.

Temario

TEMA 0: PRESENTACIÓN DEL DISEÑO DE SISTEMAS EN CHIP (2 horas)

TEMA 1: INTRODUCCIÓN A LOS SISTEMAS EN UN CHIP (6 horas)

- 1.1 Evolución de las metodologías de diseño
- 1.2 Metodologías de diseño en SoC
 - 1.2.1 Diseño basado en bloques
 - 1.2.2 Diseño basado en plataformas
- 1.3 Codiseño hardware/software
 - 1.3.1 Flujo en Codiseño
 - 1.3.2 Herramientas para codiseño
- 1.4 Librerías de núcleos y módulos IPs
 - 1.4.1 Tipos de núcleos y módulos IPs
 - 1.4.2 Interfaz entre módulos IPs

- 1.5 Reutilización de módulos IPs
 - 1.5.1 Bases para reutilizar diseños
 - 1.5.2 Modelos para reutilización de diseños

TEMA 2: METODOLOGÍA DE DISEÑO PARA NÚCLEOS (6 horas)

- 2.1 Flujos de diseño en SoC
 - 2.1.1 Requisitos del diseño
 - 2.1.2 Especificaciones. Plan de desarrollo y plan de pruebas
 - 2.1.3 Diseño arquitectural
 - 2.1.4 Verificación
 - 2.1.5 Síntesis lógica
 - 2.1.6 Diseño físico
 - 2.1.7 Documentación (checkclist y deliverables)
- 2.2 Guías para reutilizar diseños
- 2.3 Proceso de diseño para núcleos soft y firm
 - 2.3.1 Flujo de diseño
 - 2.3.2 Proceso de desarrollo
 - 2.3.3 Guías para realización de la descripción RTL
- 2.4 Proceso de diseño para núcleos tipo hard
 - 2.4.1 Especificidades de diseño de núcleos en silicio
 - 2.4.2 Proceso de desarrollo de núcleos tipo hard
- 2.5 Metodologías de diseño para memorias y núcleos analógicos
 - 2.5.1 Soluciones circuitales
 - 2.5.2 Compilador de memorias
 - 2.5.3 Modelos de simulación
 - 2.5.4 Especificación de circuitos analógicos
- 2.6 Integración del sistema
 - 2.6.1 Diseñando con soft IPs
 - 2.6.2 Diseñando con hard IPs
 - 2.6.3 Introducción a la verificación del sistema

TEMA 3: ASPECTOS SOBRE EL SINCRONISMO EN CIRCUITOS DIGITALES (6 horas)

- 3.1 Introducción
- 3.2 Skew del reloj y prestaciones de circuitos secuenciales
 - 3.2.1 Esquema de fase sencilla disparado por flanco
 - 3.2.2 Dos fases maestro-esclavo
 - 3.2.3 Otros estilos de sincronización
 - 3.2.4 Como tener en cuenta el skew de reloj
- 3.3 Circuitos autotemporizados
 - 3.3.1 Concepto
 - 3.3.2 Protocolos
- 3.4 Sincronizadores y árbitros
 - 3.4.1 Concepto e implementación de sincronizadores
 - 3.4.2 Árbitros
- 3.5 Generación de reloj y sincronización
 - 3.5.1 Generadores de reloj
 - 3.5.2 Sincronización a nivel de sistema

TEMA 4: VALIDACIÓN DEL DISEÑO (5 horas)

- 4.1 Introducción a la verificación del diseño
 - 4.1.1 Importancia de la verificación
 - 4.1.2 Tipos de verficación
 - 4.1.3 Verificación funcional

- 4.1.4 Diferencias entre verificación y test
- 4.1.5 Verificación y reutilización de diseños
- 4.2 Verificación a nivel de módulo IP
 - 4.2.1 Plan de verificación
 - 4.2.2 Bancos de prueba
- 4.3 Validación a nivel de interfaz entre núcleos
- 4.4 Validación a nivel de chip
 - 4.4.1 Cosimulación
 - 4.4.2 Emulación
 - 4.4.3 Prototipos hardware

TEMA 5: TEST DE SISTEMAS EN UN CHIP (5 horas)

- 5.1 Test de módulos IPs digitales
- 5.2 Test de memorias integradas en el chip
 - 5.2.1 Test a traves del test funcional del ASIC
 - 5.2.2 Test mediante acceso directo
 - 5.2.3 Test mediante scan
 - 5.2.4 BIST para memorias
 - 5.2.5 Test mediante un microprocesador integrado
- 5.3 Test de núcleos analógicos y mixtos
 - 5.3.1 BIST para circuitos analógicos
 - 5.3.2 Test mediante procesador integrado
 - 5.3.3 IEEE P1149.4
- 5.4 Otros aspectos del test

Requisitos Previos

Herramientas software para el diseño de circuitos integrados y sistemas electrónicos, circuitos híbridos, etc. Sistemas especiales para el tratamiento de la información.

Objetivos

- 1. Objetivos Conceptuales
- 1.1 Conocer las nuevas metodologías de diseño basadas en el uso de componentes virtuales (VC o IPs).
- 1.2 Conocer los diferentes tipos de componentes virtuales (soft, firm y hard), y su concepción y diseño. En este sentido, adquiere especial importancia conocer la integración de memorias y núcleos analógicos.
- 1.3 Conocer la planificación y los diferentes niveles de documentación necesarios en el diseño, con el fin de facilitar la integración de varios grupos de diseñadores en el desarrollo de un proyecto de elevada complejidad.
- 1.4 Conocer los métodos de verificación y validación de IPs y de un sistema completo, así como el desarrollo de entornos específicos para su ejecución.
- 2. Objetivos Procedimentales
- 2.1 Desarrollar la capacidad de realizar diseños de sistemas en chip en grupo, siguiendo una metodología y planificación concreta.
- 2.2 Diseñar un componente virtual usando la metodología de IPs vista en las clases de teoría.
- 2.3 Elaborar la planificación y los diferentes niveles de documentación básicos necesarios en un diseño de ejemplo, con el fin de facilitar la integración de varios grupos de diseñadores en el desarrollo de un proyecto de elevada complejidad.
- 3. Objetivos Actitudinales
- 3.1 Comunicar en clase los avances de los diseños de ejemplo que se realizan en grupo.
- 3.2 Valorar de forma crítica las diferentes opciones existentes a la hora de realizar un diseño de

Metodología

- Clases de Teoría:
- * Actividad del profesor: Clases expositivas combinadas con la realización de casos prácticos. Evaluar las exposiciones de los diseños asignados a cada grupo y promover un análisis crítico entre todos los estudiantes de todos los grupos.
- * Actividad del estudiante:
- -Actividad presencial: Tomar apuntes, participar en clase con el planteamiento de dudas y la exposición de ideas propias. Realizar las exposiciones de los avances realizados en la planificación de los diseños de clase.
- Actividad no presencial: Ampliación de conocimientos en un campo determinado mediante la lectura artículos y libros propuestos por el profesor. Repasar en casa los contenidos teóricos expuestos en clase para el afianzamiento de los mismos. Preparar las exposiciones de los avances realizados en la planificación de los diseños de clase.
- Prácticas de laboratorio:
- * Actividad del profesor: exposición resumida de las prácticas según la programación docente establecida. Evaluar los diseños asignados a cada grupo de estudiantes y promover un análisis crítico de las prestaciones alcanzadas en cada diseño.
- * Actividad del estudiante:
- -Actividad presencial: Realizar las prácticas según la programación docente establecida.
- -Actividad no presencial: Análisis de viabilidad de los conceptos teóricos adquiridos en clase a la hora de estudiar las diferentes opciones existentes en el diseño de un IP de comunicaciones.

Criterios de Evaluación

Acividades que liberan materia:

- -Asistencia y participación en clases con un 10%
- -Realización de un trabajo con un 20%
- -Realización de las prácticas con un 70%

Consideraciones generales:

- -Se deben aprobar ambas partes por separdo. En caso contrario la nota final sera mínima de ambas partes.
- -Aquellos estudiantes que no liberen la parte teórica deberán realizar un examen con preguntas de desarrollo y problemas prácticos con un total del 30% de la nota final.
- -Aquellos estudiantes que no liberen la parte práctica deberán realizar un examen en laboratorio consistente en la realización de una práctica de complejidad similar a las realizadas durante el curso.

Descripción de las Prácticas

El programa de contenidos prácticos de la asignatura Diseño de Sistemas en Chip se ha elaborado en concordancia y como refuerzo de los contenidos teóricos, permitiendo a los estudiantes experimentar las relaciones entre los conceptos teóricos y su implementación práctica, aprendiendo, a través de su esfuerzo personal y de su capacidad de trabajo con otros estudiantes, el manejo de módulos IPs (Intellectual Property) en un diseño, la descripción HDL a nivel de comportamiento de un sistema de mediana complejidad, la simulación del sistema y su verificación, y, sobre todo, permitirá al estudiante aprender una metodología de trabajo en grupo

válida para el diseño de sistemas de elevada complejidad.

Los contenidos de la parte práctica de la asignatura Diseño de Sistemas en Chip están formados por las prácticas de laboratorio que se describen a continuación, especificándose para cada una de ellas su distribución temporal en horas de docencia:

PRÁCTICA 1: PRESENTACIÓN DEL LABORATORIO (1 hora). En esta práctica se presentan los objetivos específicos y la metodología de trabajo que se seguirá para la realización y evaluación de las prácticas a o largo del curso, además de permitir la familiarización del estudiante con el puesto de prácticas y las normas de uso y seguridad del laboratorio. Además, en esta primera práctica, los estudiantes identificarán la estructura de directorios a utilizar en las estaciones de trabajo y la nomenclatura para la realización de las prácticas, tomando un primer contacto con el compilador de Verilog disponible en las estaciones de trabajo, así como con las diferentes fuentes de información, manuales y hojas de características disponibles en el laboratorio.

PRÁCTICA 2: INTRODUCCIÓN AL LENGUAJE VERILOG (3 horas). En esta práctica se estudia la sintaxis básica para la descripción de un diseño en lenguaje Verilog, incluyendo los números, identificadores, variables, estructura general, procesos, operadores, estructuras de control, asignaciones, temporizaciones, directivas,... Por otro lado, los estudiantes adquirirán los conceptos básicos de la descripción en Verilog a nivel estructural, de registros y de comportamiento, para lo cual describirán, usando el lenguaje HDL Verilog, diferentes circuitos lógicos combinacionales y secuenciales, además de simular un diseño descrito en Verilog y analizar el comportamiento mediante la representación gráfica de sus formas de ondas, con conocimiento de la jerarquía utilizada para desarrollar un banco de pruebas.

PRÁCTICA 3: MANEJO DE NÚCLEOS IPs (3 horas). En esta práctica se profundiza en la descripción de un diseño en lenguaje Verilog, en su simulación, y en el análisis de las formas de onda, para lo cual los estudiantes codificarán una máquina de estados finitos de mediana complejidad, lo que les permitirá, además, manejar un núcleo IP e integrarlo en el diseño a partir de su descripción estructural o de comportamiento a nivel HDL. Por último, los estudiantes trabajarán en un diseño con diferentes dominios de reloj y adaptarán las señales entre dominios para su posterior procesamiento.

PRÁCTICA 4: REALIZACIÓN DE UNAS ESPECIFICACIONES DE VERIFICACIÓN (2 horas). En esta práctica, los estudiantes comprenderán la finalidad que se persigue con la definición de las especificaciones de verificación, adquiriendo la metodología adecuada para la creación de las especificaciones de verificación de un sistema, así como su nomenclatura. Se identificarán los casos extremos que definen el funcionamiento básico de un sistema y se agruparán en base a las funciones que se deseen verificar, además de especificar los estados iniciales del sistema para la verificación de una determinada función y las diferentes acciones que deben ser verificadas para cada función.

PRÁCTICA 5: CONSTRUCCIÓN DE UN BANCO DE PRUEBAS (6 horas). En esta práctica se identificará y describirá, a partir de unas especificaciones de verificación, las diferentes tareas para la generación, tanto de los estímulos de entrada del sistema, como para llevar el sistema a un estado deseado. Con esta finalidad, se mostrará la estructura de directorios de un banco de pruebas y los estudiantes construirán, a partir de unas especificaciones de verificación, un banco de pruebas, incluyendo el módulo de test, con las llamadas a las tareas, el sistema a verificar y el módulo de jerarquía superior, también denominado módulo top. Posteriormente, realizarán la verificación y el análisis de las formas de onda, discriminando los posibles errores en el sistema de los errores propios del banco de pruebas, y finalizando con la cumplimentación, a partir de los resultados obtenidos de la verificación, de los cuadros de verificación proporcionados en las

especificaciones, detallando, además, los posibles errores detectados.

Las prácticas de esta asignatura se impartirán el el laboratorio L303: Diseño de ASICs y Sistemas Digitales, situado en la tercera planta del Pabellón A.

Bibliografía

[1 Básico] Surviving the SOC Revolution: A Guide to Platform-Based Design /

Henry Chang... [et al.].

Kluwer Academic,, Boston: (1999)

0792386795

[2 Básico] Digital integrated circuits: A design perspective /

Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic. Prentice Hall,, Upper Saddle River (New Jersey): (2003) - (2nd ed.) 0131207644

[3 Básico] Writing testbenches :functional verification of HDL models /

Janick Bergeron.

 $Kluwer\,Academic,,\,Boston:(2000)$

0792377664 (acid-free paper)

[4 Básico] System-on-a-Chip: Design and Test /

Rochit Rajsuman.

Artech House,, Boston: (2000)

1580531075

[5 Recomendado] Reuse methodology manual for system-on-a-chip designs /

by Michael Keating, Pierre Bricaud.

Kluwer Academic Publishers,, Boston: (2002) - (3rd ed.)

1402071418

[6 Recomendado] Winning the SoC revolution :experiences in real design /

edited by Grant Martin & Henry Chang.

Kluwer Academic Publishers,, Boston: (2003)

1402074956

[7 Recomendado] System-on-a-chip verification :methodology and techniques /

Prakash Rashinkar, Peter Paterson, Leena Singh. Kluwer Academic Publishers,, Boston : (2001)

0-7923-7279-4

Organización Docente de la Asignatura

			Horas			
Contenidos	HT	HP	HCT	HTT	HAI	Competencias y Objetivos
Presentación	2,0				0,5	1.1

Horas

Contenidos HT HP HCT HTT HAI Competencias y Objetivos Introducción a los Sistemas en un Chip (apartados 1.1 y 1.2); Práctica 1 y 2 2 2 0 0 1,5 1.1 y 2.1 Introducción a los Sistemas en un Chip (apartados 1.3 y 1.4) 2 0 0 0 1,5 1.1 y 1.2 Introducción a los Sistemas en un Chip (apartados 1.3 y 1.4) 1,5 2 0,5 0 1 1.1 y 1.2 Metodología de diseño para núcleos (apartados 2.1 y 2.2) 2 0 0 1,5 1,5 1,1,1,3,2.1 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 2 0,5 1 1 1,1,1,3,2.1,2.2 y 3.1 Metodología de diseño para núcleos (apartados 2.5 y 2.6) 2 0 0 1,5 1,5 1,5 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		noras					
un Chip (apartados 1.1 y 1.2); Práctica 1 y 2 Introducción a los Sistemas en un Chip (apartados 1.3 y 1.4) 2 0 0 1,5 1.1 y 1.2 Introducción a los Sistemas en un Chip (apartados 1.5); 1,5 2 0,5 0 1 1.1 y 1.2 Metodología de diseño para núcleos (apartados 2.1 y 2.2) 2 0 0 1,5 1,5 1.1, 1.3, 2.1 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 2 0,5 1 1 1.1, 1.3, 2.1, 2.2 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 0 0 1,5 1,5 1.1, 2.1, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 2 0,5 1,5 1,5 1,3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartado 3.5); Práctica 5 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2	Contenidos	HT	HP	HCT	HTT	HAI	Competencias y Objetivos
un Chip (apartados 1.3 y 1.4) 1,5 2 0,5 0 1 1.1 y 1.2 Metodología de diseño para núcleos (apartados 2.1 y 2.2) 2 0 0 1,5 1,5 1.1, 1.3, 2.1 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 2 0,5 1 1 1.1, 1.3, 2.1, 2.2 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 0 0 1,5 1,5 1.1, 2.1, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 2 0,5 1,5 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartado 3.5); Práctica 5 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Validación del diseño 2 0 0 2 2,5 1.4, 2.1, 2.3, 3.1 y 3.2	un Chip (apartados 1.1 y 1.2);	2	2	0	0	1	1.1 y 2.1
un Chip (apartado 1.5); Práctica 2 Metodología de diseño para núcleos (apartados 2.1 y 2.2) 2 0 0 1,5 1,5 1.1, 1.3, 2.1 y 3.1 Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 2 0,5 1 1 1.1, 1.3, 2.1, 2.2 y 3.1 Metodología de diseño para núcleos (apartados 2.5 y 2.6) 2 0 0 1,5 1,5 1.1, 2.1, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 2 0,5 1,5 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.5); Práctica 5 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2		2	0	0	0	1,5	1.1 y 1.2
núcleos (apartados 2.1 y 2.2) Metodología de diseño para núcleos (apartados 2.3 y 2.4), Práctica 3 2 2 0,5 1 1 1.1, 1.3, 2.1, 2.2 y 3.1 Metodología de diseño para núcleos (apartados 2.5 y 2.6) 2 0 0 1,5 1,5 1.1, 2.1, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 2 0,5 1,5 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.5); Práctica 5 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2	un Chip (apartado 1.5);	1,5	2	0,5	0	1	1.1 y 1.2
núcleos (apartados 2.3 y 2.4), Práctica 3 Metodología de diseño para núcleos (apartados 2.5 y 2.6) 2 0 0 1,5 1,5 1.1, 2.1, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 2 2 0,5 1,5 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 Aspectos sobre el sincronismo en circuitos digitales (apartado 3.5); Práctica 5 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2	_	2	0	0	1,5	1,5	1.1, 1.3, 2.1 y 3.1
Aspectos sobre el sincronismo en circuitos digitales (apartados 3.1 y 3.2); Práctica 4 Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) Aspectos sobre el sincronismo en circuitos digitales (apartados 3.5); Práctica 5 Validación del diseño 2 0 0 2 2,5 1.4, 2.1, 2.3, 3.1 y 3.2	núcleos (apartados 2.3 y 2.4),	2	2	0,5	1	1	1.1, 1.3, 2.1, 2.2 y 3.1
en circuitos digitales (apartados 3.1 y 3.2); Práctica Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) Aspectos sobre el sincronismo en circuitos digitales (apartados 3.3 y 3.4) Aspectos sobre el sincronismo en circuitos digitales (apartado 3.5); Práctica 5 Validación del diseño 2 0 0 2 2,5 1.4, 2.1, 2.3, 3.1 y 3.2		2	0	0	1,5	1,5	1.1, 2.1, 3.1 y 3.2
en circuitos digitales (apartados 3.3 y 3.4) Aspectos sobre el sincronismo 1,5 2 0,5 2 1,5 1.3, 2.1, 2.2, 3.1 y 3.2 en circuitos digitales (apartado 3.5); Práctica 5 Validación del diseño 2 0 0 2 2,5 1.4, 2.1, 2.3, 3.1 y 3.2	en circuitos digitales (apartados 3.1 y 3.2); Práctica	2	2	0,5	1,5	1,5	1.3, 2.1, 2.2, 3.1 y 3.2
en circuitos digitales (apartado 3.5); Práctica 5 Validación del diseño 2 0 0 2 2,5 1.4, 2.1, 2.3, 3.1 y 3.2	en circuitos digitales	1,5	2	0,5	2	1,5	1.3, 2.1, 3.1 y 3.2
	en circuitos digitales (apartado	1,5	2	0,5	2	1,5	1.3, 2.1, 2.2, 3.1 y 3.2
		2	0	0	2	2,5	1.4, 2.1, 2.3, 3.1 y 3.2

			Horas			
Contenidos	HT	HP	HCT	HTT	HAI	Competencias y Objetivos
Validación del diseño (apartado 4.3); Práctica 5	1,5	2	0,5	2	2	1.4, 2.1, 2.2, 2.3, 3.1 y 3.2
Validación del diseño (apartado 4.4)	2	0	0	2,5	2,5	1.4, 2.1, 2.3, 3.1 y 3.2
Test de sistemas en un chip (apartados 5.1 y 5.2); Práctica 5	1,5	2	0,5	2	2	1.4, 2.1, 2.2, 2.3, 3.1 y 3.2

Equipo Docente

ROBERTO SARMIENTO RODRÍGUEZ

(COORDINADOR)

Categoría: CATEDRATICO DE UNIVERSIDAD

Departamento: INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA

Teléfono: 928451232 Correo Electrónico: roberto.sarmiento@ulpgc.es

VALENTÍN DE ARMAS SOSA

(RESPONSABLE DE PRACTICAS)

Categoría: TITULAR DE UNIVERSIDAD

Departamento: INGENIERÍA ELECTRÓNICA Y AUTOMÁTICA

Teléfono: 928452837 Correo Electrónico: valentin.dearmas@ulpgc.es

WEB Personal: http://www.iuma.ulpgc.es/users/armas

Resumen en Inglés

System on a chip (SoC) concepts. Virtual components or IPs. SoC methodology and design. SoC Verification. IP reuse. Hardware/software codesign.