UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

GUÍA DOCENTE CURSO: 2007/08

15735 - MEDIO AMBIENTE Y ENERGÍA

ASIGNATURA: 15735 - MEDIO AMBIENTE Y ENERGÍA

CENTRO: Escuela de Ingenierías Industriales y Civiles

TITULACIÓN: Ingeniero Químico

DEPARTAMENTO: INGENIERÍA DE PROCESOS

ÁREA: Máquinas Y Motores Térmicos PLAN: 10 - Año 200**ESPECIALIDAD**:

CURSO: Cr. comunes ciclMPARTIDA: Segundo semestre TIPO: Optativa

CRÉDITOS: 7,5 TEÓRICOS: 4,5 PRÁCTICOS: 3

Descriptores B.O.E.

Problemas Medio Ambientales asociados a la extracción, transformación y uso final de las energías. Técnicas de reducción de Impacto ambiental.

Temario

- 1. Introducción al uso de la energía, en la sociedad industrial. (4 horas)
- 1.1. Introducción.
- 1.2. Conceptos fundamentales.
- 1.3. Uso de la energía.
- 1.4. Recursos energéticos.
- 1.5. Fuentes de energía renovable y no renovable.
- 1.6. Energía y medio ambiente: efectos locales y globales.
- 2. Energía de los combustibles fósiles. (6 horas)
- 2.1. Introducción.
- 2.2. El petróleo.
- 2.3. El gas natural.
- 2.4. El carbón.
- 3. Máquinas térmicas y producción de electricidad. (6 horas)
- 3.1. Máquinas térmicas.
- 3.2. Generación de electricidad.
- 3.3. Potencia eléctrica.
- 3.4. Distribución de electricidad.
- 3.5. Cogeneración.
- 4. Fuentes de energías renovables I: Energía Solar. (8 horas)
- 4.1. Radiación solar: conceptos fundamentales.
- 4.2. Arquitectura bioclimática.
- 4.3. Energía solar fotovoltaica.
- 4.4. Energía solar térmica de baja temperatura.
- 4.5. Energía solar térmica de media y alta temperatura.
- 4.6. Consideraciones medioambientales de la energía solar.

- 5. Fuentes de energías renovables II: Energía Eólica. (6 horas)
- 5.1. Energía y potencia del viento.
- 5.2. Conversión de la energía del viento.
- 5.3. Máquinas eólicas.
- 5.4. Parques eólicos.
- 5.5. Aspectos medioambientales y económicos de la energía eólica.
- 6. Fuentes de energías renovables III: Otras Energías. (10 horas)
- 6.1. Introducción.
- 6.2. Energía de la biomasa.
- 6.3. Energía hidráulica. Plantas hidroeléctricas.
- 6.4. Energía del mar: energía de las mareas, energía de las olas.
- 6.5. Energía geotérmica.
- 6.6. Tecnología del Hidrógeno. Desarrollos tecnológicos.
- 7. Energía nuclear. (6 horas)
- 7.1. Energía de fisión: reactores nucleares.
- 7.2. Energía de fusión.
- 7.3. Efectos ambientales.
- 7.4. Presente y futuro de la energía nuclear.

8. USO EFICIENTE DE LA ENERGÍA (6 horas)

- 8.1. Introducción.
- 8.2. Calentadores.
- 8.3. Aprovechamiento de la energía en la industria.
- 9. Almacenamiento y transporte de energía. (6 horas)
- 9.1. Introducción.
- 9.2. Potencia y energía.
- 9.3. Sistemas de almacenamiento.
- 9.4. Almacenamiento térmico.
- 9.5. Almacenamiento químico y electroquímico.
- 9.6. Almacenamiento mecánico.
- 9.7. Almacenamiento eléctrico.
- 10. Contaminación atmosférica. (4 horas)
- 10.1. La atmósfera de la tierra.
- 10.2. Monóxido de Carbono.
- 10.3. Los Óxidos de Nitrógeno.
- 10.4. Dióxidos de Azufre.
- 10.5. Las partículas como contaminantes.
- 10.6. La lluvia ácida.
- 11. Efectos globales. (3 horas)
- 11.1. Introducción.
- 11.2. Disminución del ozono en la estratosfera.
- 11.3. El efecto invernadero y el cambio climático.

Requisitos Previos

El alumno debe tener unos conocimientos básicos de Química, Mecánica de fluidos, Termodinámica, Transmisión de Calor, Máquinas Térmicas, Electrotecnia.

Objetivos

Conocer los conceptos básicos, fuentes, aplicaciones y problemas de interés relativos al uso de la energía y su interacción con el medio ambiente.

Metodología

Las clases serán participativas con una motivación hacia el alumno a través de cuestiones relacionadas con el tema a explicar y contando con la aptitud del alumno.

Se hará uso de herramientas de apoyo a la docencia presencial, tal como el Campus Virtual.

Criterios de Evaluación

Para superar la asignatura, el alumno deberá realizar un examen parcial de la asignatura que contendrá una parte de teoría valorada en un 80% y una parte de problemas, valorada en un 20%. Esta nota supondrá un 60% de la nota final. Además, deberá realizar un trabajo de clase relacionado con la asignatura, valorado en un 20%, este trabajo lo debe de exponer en clase. Además, se valorará en la nota final en un 10% la actitud del alumno en clase y del interés mostrado. Por último, se tendrá en cuenta los supuestos prácticos, valorados en un 10%. Estos supuestos prácticos deben de ser presentadas en una memoria.

Descripción de las Prácticas

Se realizarán diferentes supuestos prácticos relacionados con la temática de la asignatura, en los que se podrán utilizar herramientas informáticas de simulación. (10 h.)

Bibliografía

[1 Básico] Tecnologías energéticas e impacto ambiental /

Pedro L. García Ybarra, coordinador de la obra ; Amparo Barbolla Granda... [et al.], equipo de coordinación ; prólogo de Félix Ynduráin Muñoz.

McGraw-Hill,, Madrid : (2001) 8448133315

[2 Básico] Energy and the environment /

Robert A. Ristinen, Jack J. Kraushaar. Wiley,, New York: (1999) 0471172480

[3 Recomendado] Energy storage for power systems /

A. Ter-Gazarian.

Peter Peregrinus on behalf of the Institution of Electrical Engineers,, Stevenage: (1994) 0863412645

[4 Recomendado] Wind energy: and the environment /

edited by D T Swift-Hook. [Short Run Press],, [England]: (1989) 0 86341 176 2

[5 Recomendado] Sistemas pasivos de energía solar: (arquitectura solar) /

Efrén

Alonso Palacio.

Sociedad General de Ediciones Técnicas,, Madrid: (1984)

[6 Recomendado] Climate change and a European low-carbon energy system /

European Environment Agency.

 ${\it Office for Official Publications of the European Communities,, Luxembourg: (2005)}$

9291677655

[7 Recomendado] Energía nuclear: ¿peligro ambiental o solución para el siglo XXI? /

Fidel Castro Díaz-Balart.

Grijalbo,, Barcelona: (1999) - (1ª ed.)

84-253-3425-X

[8 Recomendado] El deterioro del medioambiente /

Francisco Bermejo Martínez.

Universidad de Santiago de Compostela, Santiago de Compostela: (1982)

8471912821

[9 Recomendado] Energía geotérmica /

Jaume Pous, Lluís Jutglar.

Ceac,, Barcelona: (2004)

8432910619

[10 Recomendado] La economía del hidrógeno: la creación de la red energética mundial y la redistribución del poder en la Tierra /

Jeremy Rifkin; [Traducción

de Ramón Vilá Vernis].

Paidós,, Barcelona: (2003) - ([3ª ed.].)

8449312809

[11 Recomendado] Radiactividad y medioambiente /

León Garzón Ruipérez.

Universidad de Oviedo,, Oviedo: (1979)

8474680158

[12 Recomendado] Air pollution control engineering: basic calculations for particulate collection.

Licht, William

Marcel Dekker,, New York: (1988) - (2nd ed.)

0824778987

[13 Recomendado] Energía eólica /

Miguel Villarrubia.

Ceac,, Barcelona: (2004)

8432910627

[14 Recomendado] La energía nuclear /

Walter C.Patterson.

Blume,, Barcelona: (1982)

8472142450

Equipo Docente

AGUSTÍN MACÍAS MACHÍN

(COORDINADOR)

Categoría: CATEDRATICO DE UNIVERSIDAD

Departamento: INGENIERÍA DE PROCESOS

Teléfono: 928451940 Correo Electrónico: amacias@dip.ulpgc.es

ALEJANDRO RAMOS MARTÍN

(RESPONSABLE DE PRACTICAS)

Categoría: AYUDANTE

Departamento: INGENIERÍA DE PROCESOS

Teléfono: 928451933 Correo Electrónico: alejandro.ramos@ulpgc.es