

PROYECTO DOCENTE CURSO: 2005/06

14120 - COMUNICACIONES VÍA SATÉLITE

ASIGNATURA: 14120 - COMUNICACIONES VÍA SATÉLITE

CENTRO: Escuela de Ingeniería de Telecomunicación y Electrónica

TITULACIÓN: Ingeniero de Telecomunicación

DEPARTAMENTO: SEÑALES Y COMUNICACIONES

ÁREA: Teoría De La Señal Y Comunicaciones

PLAN: 13 - Año 200 ESPECIALIDAD:

CURSO: Quinto curso IMPARTIDA: Segundo semestre TIPO: Optativa

CRÉDITOS: 4.5 TEÓRICOS: 3 PRÁCTICOS: 1.5

Descriptores B.O.E.

Comunicaciones por satélite. Técnicas de espectro ensanchado. Móviles. Calculo del enlace

Temario

- 1.- Introducción a las comunicaciones vía satélite (1 T)
- 2.- Mecánica orbital avanzada (3 T + 1 P)
 - 2.1 Elementos orbitales
 - 2.2 Perturbaciones de la órbita
 - 2.3 Propagadores orbitales
 - 2.4 Posicionamiento en órbita
- 3.- Segmento Espacial (2 T)
 - 3.1 Plataforma espacial
 - 3.2 Carga de pago
- 4.- Segmento Terreno (2 T)
- 4.1 Arquitectura
- 4.2 Estación terrena
- 4.3 Centro de control
- 5.- Técnicas de Transmisión (3 T + 1 P)
 - 5.1 Bandas de frecuencias
 - 5.2 Codificación de canal
- 5.3 Multiplexación
- 5.4 Modulaciones digitales
 - 5.5 Análisis de señales reales
- 6.- Técnicas de acceso múltiple (2 T + 1 P)
 - 6.1 FDMA
 - **6.2 TDMA**
 - **6.3 CDMA**
 - 6.4 Acceso aleatorio

- 7.- Diseño de sistemas vía satélite (3 T + 1 P)
 - 7.1 Elementos y parámetros de enlaces vía satélite
 - 7.2 Cálculo de balances de enlaces con interferencias
- 8.- Posicionamiento de satélites en órbita (2 T)
 - 8.1 Lanzadores
 - 8.2 Bases de lanzamiento
- 9.- Sistemas vía satélite (8 T)
- 9.1 Sistemas de teledetección
- 9.2 Sistemas de radionavegación
- 9.3 Sistemas de radiodifusión
- 9.4 Sistemas de comunicaciones móviles
- 9.5 Sistemas de salvamento

Conocimientos Previos a Valorar

Se recomienda tener los conocimientos de las siguientes asignaturas: Sistemas de Telecomunicación, radiocomunicación y antenas

Objetivos

El conocimiento teórico y práctico de los sistemas de comunicaciones vía satélite, tanto de los elementos que lo componen (órbitas, satélites, estaciones y lanzadores), como de las técnicas específicas para la transmisión de la información (codificación, modulación, etc..) y para la compartición de los recursos del satélite (especialmente el acceso por división en tiempo y por división en código). Así mismo se profundiza en las aplicaciones de sistemas por satélites más relevantes: teledetección, radiodeterminación, radiodifusión, comunicaciones móviles, etc.

Metodología de la Asignatura

La asignatura tiene carácter optativo con 3 créditos teóricos y 1.5 prácticos. Los créditos teóricos se destinarán a la impartición de clases teóricas y resolución de problemas, con un total de 2 horas semanales y los créditos prácticos se destinarán a la realización de prácticas en laboratorio con un total de 2 horas semanales en semanas alternas.

La parte correspondiente a los créditos de teoría (3 créditos) se realizarán mediante clases magistrales en pizarra, o usando el retroproyector o cañón. Los créditos de prácticas (1.5 créditos) se completan mediante la realización de prácticas de laboratorio sobre sistemas reales y mediante simulaciones.

La página donde está el contenido de teoría, prácticas y problemas es www.gsr.ulpgc.es

Evaluación

- Actividades que liberan materia:

Realización de las prácticas con un porcentaje del 20%.

- Consideraciones generales:

La evaluación final de la asignatura se realizará mediante una ponderación entre la parte teórica (40%), la parte práctica (30%) y una evaluación continuada (30%) consistente en realización de problemas (5%) y un trabajo específico (25%). No es necesario aprobar cada parte por separado.

La evaluación de la parte teórica se basa en un examen escrito consistente en la resolución de cuestiones teóricas y problemas prácticos.

La evaluación de la parte práctica se divide en dos partes:

- Un examen escrito a realizar en el mismo día que el examen teórico. (10%).
- Para los alumnos que asistan de forma continuada a las prácticas, el 20% restante consistirá en la asistencia a clase de prácticas con la entrega de memorias y trabajos previos en el plazo estipulado. Para los que no cumplan con este requisito, este porcentaje se alcanzará con la realización de un examen en el laboratorio de forma individualizada.

Descripción de las Prácticas

Se imparten en el laboratorio de Sistemas Radioeléctricos (antiguo lab. de Radar)

- 1.- Introducción a los sitemas por satélite (2 h)
 - 1.1 Historia
 - 1.2 Misiones tripuladas
 - 1.3 Transbordadores

Práctica introductoria sobre diversos aspectos de los sitemas por satélite.

- 2.- Análisis de TLEs (2 h)
 - 2.1 Objetivos
 - 2.2 Elementos de 2 líneas
 - 2.3 Interfase de análisis de TLEs

Diseño de una herramienta que permita visualizar los elmentos orbitales para cualquier satélite y obtener diversos parámetros asociados a dicha órbita (periodo, velocidades, etc..)

- 3.- Maniobras orbitales (2 h)
 - 3.1 Objetivos
 - 3.2 Lanzamiento desde Canarias
 - 3.3 Resultados

Cálculo de las diversas posibilidades para posicionar un satélite en la órbita GEO usando transferencias de Homman y cambios de plano

- 4.- Medición de la G/T de estaciones terrenas (2 h)
 - 4.1 Objetivos
 - 4.2 Sistema de medida
 - 4.3 Resultados

Obtención práctica del valor de la G/T usando el método de las radioestrellas.

- 5.- Apuntamiento de antenas (2 h)
 - 5.1 Objetivos
 - 5.2 Procedimiento de apuntamiento de antenas terrenas
 - 5.3 Resultados

Prácticar el apuntamiento de antenas a satélites GEO usando una antena real y un medidor de campo.

- 6.- Sistema de recepción de imágenes METEOSAT (2 h)
 - 6.1 Introducción
 - 6.2 Sistema de recepción

6.3 Manejo software WxSAT

Análisis de los elementos típicos de una estación receptora aplicado a la recpción de imágenes WEFAX del satélite METEOSAT.

- 7.- Procesado de imágenes de satélite (2 h)
 - 7.1 Introduccion
 - 7.2 Transformaciones espectrales
 - 7.3 Transformaciones espaciales
 - 7.4 Clasificación

Familiarización con el campo de la teledetección y de las técnicas de procesado de imágenes.

8.- Lanzadores (1 h)

Análisis de diferentes sistemas de lanzamientos de satélites (arianne, transbordadores, aerotrasnaportados..)

Bibliografía

[1] Space mission analysis and design /

```
edited by James R. Wertz and Wiley J. Larson; coordination by Douglas Kirkpatrick, Donna Klungle. Microcosm Press;, El Segundo (Calif.): (1999) - (3rd ed, [5th print. 2003].) 0-7923-5901-1 (cart.)
```

[2] Satellite communications systems: systems, techniques and technology /

```
G. Maral, M. Bousquet.

John Wiley & Sons,, Chichester: (1993) - (2nd ed.)
0471930326
```

[3] Principles of communications satellites /

Gary D. Gordon and Walter L. Morgan. John Wiley & Sons,, New York: (1993) 047155796X

Equipo Docente

FRANCISCO EUGENIO GONZÁLEZ

Categoría: TITULAR DE UNIVERSIDAD

Departamento: SEÑALES Y COMUNICACIONES

Teléfono: 928452979 Correo Electrónico: francisco.eugenio@ulpgc.es

FRANCISCO JAVIER MARCELLO RUIZ

(COORDINADOR)

Categoría: TITULAR DE ESCUELA UNIVERSITARIA

Departamento: SEÑALES Y COMUNICACIONES

Teléfono: 928457365 Correo Electrónico: javier.marcello@ulpgc.es